Agregado siderúrgico de escória de aciaria: potencialidades e entraves para o aproveitamento em países em desenvolvimento
Steel slag aggregate: potentialities and challenges for use in developing countries
Leonardo Dias de Abreu; Tânia Galavote; Luciana Harue Yamane; Renato Ribeiro Siman
Resumo
Em decorrência da crescente demanda mundial por agregado natural, busca-se a substituição por agregados reciclados produzidos a partir de escória siderúrgica em obras de infraestrutura pública. Entretanto, são relatadas diversas barreiras que dificultam o aproveitamento desses coprodutos e promovem a sua destinação para aterros industriais em países em desenvolvimento. Portanto, para esclarecer as principais dificuldades e entraves, foi realizada uma revisão sistematizada bibliográfica e documental. A partir disso, elaborou-se um diagrama de causa e efeito para representar as inter-relações entre os elementos identificados e a utilização do agregado de escória de aciaria. Os resultados apontam que elementos políticos e normativos, especificamente relacionados a obrigatoriedade, são preferidos e geralmente têm maior relevância em comparação aos demais, sendo os que mais influenciam sua utilização. Além disso, apresentam uma série de aspectos potencialmente positivos para a utilização de agregados alternativos. Cabe salientar, também, que esta pesquisa visa colaborar com a indicação de potencialidades e desafios para o uso de escória siderúrgica em países em desenvolvimento, contribuir para pesquisas futuras e auxiliar os tomadores de decisão na elaboração, revisão e implementação de novas políticas públicas.
Palavras-chave
Abstract
As a result of the global growing demand for natural aggregate, there is a search for a replacement for recycled aggregates produced from steel slag in public infrastructure works. However, several barriers hindering the use of this waste have been reported and promoting its destination for industrial landfills in developing countries. Therefore, a systematic bibliographic and document review was carried out to shed light on the main difficulties reported in the literature. This enabled, an attempt was made to represent, through a cause-and-effect diagram, the interrelationships between the identified elements and the use of steel slag aggregate. Political and normative elements, specifically in terms of obligation, are preferred and generally have greater relevance about the others, being the ones that have most influenced greater use, in addition to presenting a series of potentially positive aspects for the use of alternative aggregates. Moreover, this research aims to contribute to indicating the potential and challenges for the use of steel slag in developing countries, to contribute to future research, and to assist decision-makers in the elaboration, review, and implementation of new public policies
Keywords
Referências
1 Kim JH, Bae SH, Choi SJ. Effect of amorphous metallic fibers on strength and drying shrinkage of mortars with steel slag aggregate. Materials (Basel). 2021;14(18):5403
2 Martins ACP, Franco de Carvalho JM, Costa LCB, Andrade HD, de Melo TV, Ribeiro JCL, et al. Steel slags in cement-based composites: an ultimate review on characterization, applications and performance. Construction & Building Materials. 2021;291:123265.
3 Zhang X, Chen J, Jiang JJ, Li J, Tyagi RD, Surampalli RY. The potential utilization of slag generated from iron- and steelmaking industries: a review. Environmental Geochemistry and Health. 2019;42(5):1321-1334.
4 Costa LCB, Nogueira MA, Andrade HD, Carvalho JMF, Elói FPF, Brigolini GJ, et al. Mechanical and durability performance of concretes produced with steel slag aggregate and mineral admixtures. Construction & Building Materials. 2022;318:126152.
5 Cui P, Wu S, Xiao Y, Hu R, Yang T. Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate. Journal of Hazardous Materials. 2021;405:124441.
6 Fisher LV, Barron AR. The recycling and reuse of steelmaking slags — A review. Resources, Conservation and Recycling. 2019;146:244-255.
7 Dai S, Zhu H, Zhai M, Wu Q, Yin Z, Qian H, et al. Stability of steel slag as fine aggregate and its application in 3D printing materials. Construction & Building Materials. 2021;299:123938.
8 Nunes VA, Borges PHR. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Construction & Building Materials. 2021;281:122605.
9 Degraded Land Remediation. Land. 2022;11:224.
10 Olofinnade O, Morawo A, Okedairo O, Kim B. Solid waste management in developing countries: reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production. Case Stud Constr Mater. 2021;14:e00532.
11 Sharba AA. The efficiency of steel slag and recycled concrete aggregate on the strength properties of concrete. KSCE Journal of Civil Engineering. 2019;23(11):4846-4851.
12 Swathi M, Andiyappan T, Guduru G, Amarnatha Reddy M, Kuna KK. Design of asphalt mixes with steel slag aggregates using the Bailey method of gradation selection. Construction & Building Materials. 2021;279:122426.
13 Habibi F, Asadi E, Sadjadi SJ, Barzinpour F. A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities: a case study in Tehran. Journal of Cleaner Production. 2017;166:816-834.
14 Mendonça RL, Rodrigues GLC. Uso adequado da escória de aciaria. [Internet]. Pavimentação em foco; 2022 [acesso em 10 out. 2023]. Disponível em: https://pavimentacaoemfoco.blogspot.com/search/label/Artigos
15 Fu Q, Xue G, Xu S, Li J, Dong W. Mechanical performance, microstructure, and damage model of concrete containing steel slag aggregate. Structural Concrete. 2023;24(2):2189-2207. http://dx.doi.org/10.1002/ suco.202200350.
16 Guo J, Bao Y, Wang M. Steel slag in China: treatment, recycling, and management. Waste Management (New York, N.Y.). 2018;78:318-330.
17 Lee MY, Kang JH, Hwang DG, Yoon Y-S, Yoo M-S, Jeon T-W. Environmental assessment of recycling (EAoR) for safe recycling of steelmaking slag in the republic of Korea: applications, leaching test, and toxicity. Sustainability (Basel). 2021;13(16):8805.
18 Instituto Aço Brasil. Relatório de Sustentabilidade da indústria brasileira do aço – 2021 [Internet]. Instituto Aço Brasil; 2021 [acesso em 16 out. 2023]. Disponível em: https://acobrasil.org.br/site/indicadores-de-sustentabilidade/
19 Perteghella A, Gilioli G, Tudor T, Vaccari M. Utilizing an integrated assessment scheme for sustainable waste management in low and middle-income countries: case studies from Bosnia-Herzegovina and Mozambique. Waste Management (New York, N.Y.). 2020;113:176-185.
20 Associação Brasileira de Normas Técnicas. NBR 7211 Agregado para concreto – Especificação [Internet]. Rio de Janeiro: ABNT; 2022 [acesso em 10 out. 2023]. Disponível em: https://www.normas.com.br/autorizar/ visualizacao-nbr/238/identificar/visitante
21 Associação Brasileira de Normas Técnicas. NBR 52 - Agregado miúdo – Determinação da massa específica e massa específica aparente [Internet]. Rio de Janeiro: ABNT; 2003 [acesso em 10 out. 2023]. Disponível em: https://www. target.com.br/produtos/normas-tecnicas/36130/nbrnm52-agregado-miudo-determinacao-de-massa-especifica-emassa-especifica-aparente
22 Associação Brasileira de Normas Técnicas. NBR 16917 - Agregado graúdo - Determinação da densidade e da absorção de água. [Internet]. Rio de Janeiro: ABNT; 2009 [acesso em 10 out. 2023]. Disponível em: https://www. normas.com.br/visualizar/abnt-nbr-nm/13063/abnt-nbr16917-agregado-graudo-determinacao-da-densidade-e-daabsorcao-de-agua
23 Ghosh D, Shah J, Swami S. Product greening and pricing strategies of firms under green sensitive consumer demand and environmental regulations. Annals of Operations Research. 2020;290(1-2):491-520.
24 Ghosh A, Ghosh AK. Solid waste management in steel industry—challenges and opportunities. In: Sustainable Waste Management: Policies and Case Studies: 7th IconSWM—ISWMAW 2017; Singapure. Singapore: Springer; 2017. Vol. 1, pp. 299-307.
25 Pessin VZ, Yamane LH, Siman RR. Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics. 2022;127(6):3695-3718.
26 Ventana Systems. Vensim. UK: Ventana Systems; 2021.
27 Ryan E, Pepper M, Munoz A. Causal loop diagram aggregation towards model completeness. Systemic Practice and Action Research. 2021;34(1):37-51.
28 Sterman JD. Business dynamics: systems thinking and modeling for a complex world. USA: McGraw-Hill Companies, Inc.; 2000.
29 Morecroft JDW. Strategic modelling and business dynamics: a feedback systems approach. 2nd ed. Chichester: Wiley; 2015.
30 Pruyt E. Small system dynamics models for big issues: triple jump towards real-world complexity. Delft: TU Delft Library; 2013.
31 Sena LG, Calixto LM, Galavote T, Chaves GLD, Siman RR. Gestão de resíduos domiciliares: uma análise sistêmica sob a ótica da sustentabilidade financeira de municípios e rendimentos de catadores de materiais recicláveis no Brasil. urbe. Urbe. Revista Brasileira de Gestão Urbana. 2023;15:e20220212.
32 Liu G, Yang Z, Zhang F, Zhang N. Environmental tax reform and environmental investment: a quasi-natural experiment based on China’s Environmental Protection Tax Law. Energy Economics. 2022;109:106000.
33 Wisconsin. 2021 Wisconsin Statutes & Annotations. USA: Justia Legal Resources; 2021. Chapter 285 - Air pollution. Disponível em: https://law.justia.com/codes/wisconsin/2021/chapter-285/. Acesso em: 10 de out. 2023
34 Japan for Sustainability. Japan’s Green Purchasing Law: Description and Achievements. Japan: Japan for Sustainability; 2003.
35 Japan. Fundamental law for establishing a sound material-cycle society. Japan: Environment Agency Japan; 2000.
36 Brasil. Lei nº 12.305 de 02 de Agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências. Diário Oficial da União. 2010.
37 Espírito Santo. Plano Estadual de Resíduos Sólidos do Espírito Santo. Vitória: SEAMA; 2019.
38 European Parliament and of the Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Strasbourg: King’s Printer of Acts of Parliament; 2018. Disponível em: https://eur-lex.europa.eu/eli/dir/2018/851/oj
39 Associação Brasileira de Normas Técnicas. NBR 10004: Resíduos sólidos – Classificação [Internet]. Rio de Janeiro: ABNT; 2004 [acesso em 16 out. 2023]. Disponível em: https://www.abntcatalogo.com.br/pnm.aspx?Q=T0pJNTgyR ndVYVc5WWFMb3RYU2xvaFZxaFFNMlZJZlY=
40 Li J, Yao Y, Zuo J, Li J. Key policies to the development of construction and demolition waste recycling industry in China. Waste Management (New York, N.Y.). 2020;108:137-143.
41 Minkov N, Schneider L, Lehmann A, Finkbeiner M. Type III Environmental Declaration Programmes and harmonization of product category rules: status quo and practical challenges. Journal of Cleaner Production. 2015;94:235-246.
42 Singapore. Zero Waste Masterplan [Internet]. Singapore: Zero Waste; 2023 [acesso em 16 out. 2023]. Disponível em: https://www.towardszerowaste.gov.sg/zero-waste-masterplan/
43 Freitas SMAC, Sousa LN, Diniz P, Martins ME, Assis PS. Steel slag and iron ore tailings to produce solid brick. Clean Technologies and Environmental Policy. 2018;20(5):1087-1095.
44 Mhatre P, Gedam VV, Unnikrishnan S. Material circularity potential for construction materials – The case of transportation infrastructure in India. Resources Policy. 2021;74:102446.
45 Machado CM Jr, Martinez IVAL, Silva OR, Bazanini R. Social and Environmental Innovations in Brazilian Siderurgy. Rev Adm IMED. 2020;10(2):140-157.
46 Ajayi SO, Oyedele LO, Bilal M, Akinade OO, Alaka HA, Owolabi HA, et al. Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements. Resources, Conservation and Recycling. 2015;102:101-112.
47 Di Filippo J, Karpman J, DeShazo JR. The impacts of policies to reduce CO2 emissions within the concrete supply chain. Cement and Concrete Composites. 2019;101:67-82.
48 Kang L, Du HL, Zhang H, Ma WL. Systematic research on the application of steel slag resources under the background of big data. Complexity. 2018;2018:6703908.
49 Ghaffar SH, Burman M, Braimah N. Pathways to circular construction: an integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production. 2020;244:118710.
50 Xia B, Ding T, Xiao J. Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study. Waste Management (New York, N.Y.). 2020;105:268-278.
51 Goli A. The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Stud Constr Mater. 2022;16:e00861.
52 Dondi G, Mazzotta F, Lantieri C, Cuppi F, Vignali V, Sangiovanni C. Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements. Materials (Basel). 2021;14(2):345.
53 Ajayi SO, Oyedele LO. Policy imperatives for diverting construction waste from landfill: Experts’ recommendations for UK policy expansion. Journal of Cleaner Production. 2017;147:57-65.
54 Abreu LD. Potencialidades e desafios para o aproveitamento de agregado siderúrgico de escória de aciaria em países em desenvolvimento: uma revisão sistematizada da literatura [dissertação]. Vitória: Universidade Federal do Espírito Santo; 2023 [acesso em 4 dez. 2023]. Disponível em: https://engenhariaambiental.ufes.br/pt-br/pos-graduacao/PPGEA/ detalhes-da-tese?id=17379
55 Di Maria A, Salman M, Dubois M, Van Acker K. Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag. The International Journal of Life Cycle Assessment. 2018;23(11):2091-2109.
56 United Kingdom. Aggregate from waste steel slag: quality protocol. UK: GOV.UK; 2016.
57 Luo Q, Grossule V, Lavagnolo MC. Washing of residues from the circular economy prior to sustainable landfill: Effects on long-term impacts. Waste Management & Research. 2023;41(3):585-593.
58 Dutra RMS, Yamane LH, Siman RR. Influence of the expansion of the selective collection in the sorting infrastructure of waste pickers’ organizations: a case study of 16 Brazilian cities. Waste Management (New York, N.Y.). 2018;77:50-58.
59 Gálvez-Martos JL, Styles D, Schoenberger H, Zeschmar-Lahl B. Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling. 2018;136:166-178.
60 Li J, Zuo J, Guo H, He G, Liu H. Willingness to pay for higher construction waste landfill charge: a comparative study in Shenzhen and Qingdao, China. Waste Management (New York, N.Y.). 2018;81:226-233.
61 Ho P. Greening industries in newly industrializing economies [Internet]. New York: Routledge; 2016 [acesso em 16 out. 2023]. Disponível em: https://www.routledge.com/Greening-Industries-in-Newly-Industrializing-Economies/ Ho/p/book/9781138975507
62 Amapá. TESOURO VERDE: Programa voltado para o desenvolvimento econômico sustentável no Estado do Amapá. Amapá: Disponível em: http://www.tesouroverde.ap.gov.br/. Acesso em: 15 de out. 2023; 2023.
63 Cadoret I, Galli E, Padovano F. How do governments actually use environmental taxes? Applied Economics. 2020;52(48):5263-5281.
64 Söderholm P. Taxing virgin natural resources: lessons from aggregates taxation in Europe. Resources, Conservation and Recycling. 2011;55(11):911-922.
Submetido em:
04/12/2023
Aceito em:
06/03/2024