Emprego de CO2 no espessamento de concentrado de espodumênio
Application of CO2 in the thickening of spodumene concentrate
Pedro Henrique Medeiros da Mata, Adriane Aparecida de Melo, Guilherme José Ramos Oliveira, Daniela Gomes Horta
Resumo
O CO2 é empregado como regulador de pH em processos industriais. No entanto, sua aplicação em operações de processamento mineral em escala industrial se restringe a poucos trabalhos da literatura. Nosso objetivo foi investigar a ação de CO2 no espessamento de concentrado de espodumênio, em comparação a um agente coagulante comercial. Os testes foram realizados em circuito industrial por meio da variação da dosagem de coagulante e vazão de CO2 no espessador de concentrado. Durante os testes, foram coletadas amostras do overflow para a determinação de pH, turbidez e sólidos totais. O emprego de CO2 gerou resultados mais satisfatórios, com menor turbidez e concentração de sólidos totais, em comparação ao coagulante. A quantidade de sólidos totais reduziu de 13400 mg/L com o coagulante para 523 mg/L com o CO2 . Isto pode significar um aumento de 83 t/mês de concentrado no underflow do espessador. Assim, este trabalho mostrou, de forma exploratória, a possibilidade de substituição de coagulantes por CO2 no desaguamento de polpas em uma usina de beneficiamento de espodumênio.
Palavras-chave
Abstract
CO2 is employed as a pH regulator in industrial processes. However, its application in mineral processing operations at an industrial scale is restricted to a few works in the literature. Our objective was to investigate the use of CO2 on the thickening of spodumene concentrate, in comparison to a commercial coagulating agent. The tests were carried out in an industrial circuit by varying the coagulant dosage and CO2 flow rate in the concentrate thickener. For this, overflow samples were collected to determine pH, turbidity, and total solids. The use of CO2 caused more satisfactory results, with lower turbidity and concentration of total solids, compared to the coagulant. The amount of total solids reduced from 13,400 mg/L with the coagulant to 523 mg/L with CO2 . This could mean an increase of 83 t/month of concentrate in the thickener underflow. Thus, this work showed in an exploratory way the possibility of replacing coagulants with CO2 in the dewatering of pulps at a spodumene beneficiation plant.
Keywords
References
1 Chaves AP. Teoria e prática do tratamento de minérios: desaguamento, espessamento e filtragem. 4ª ed. São Paulo: Oficina de Textos; 2013.
2 Wills BA, Finch JA. Wills’ mineral processing technology. 8th ed. Oxford: Butterworth-Heinemann; 2016.
3 Baltar CAM. Agregação na separação sólido-líquido. In: Luz AB, França SCA, Braga PFA, editores. Tratamento de minérios. 6ª ed. Rio de Janeiro: CETEM/MCTIC; 2018.
4 Fu L, Ren Z, Si W, Ma Q, Huang W, Liao K, et al. Research progress on CO2 capture and utilization technology. Journal of CO2 Utilization. 2022;66:102260. http://doi.org/10.1016/j.jcou.2022.102260.
5 Andrade AG, Athayde M. Iron ore filtration process improvement through pH modification. SN Applied Sciences. 2021;3(4):433. http://doi.org/10.1007/s42452-021-04446-2.
6 Hassas BV, Miller JD. The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response. Minerals Engineering. 2019;144:106048. http://doi.org/10.1016/j.mineng.2019.106048.
7 Freitas AS, Matiolo E, Rodrigues RT. Flotation of calcite from apatite of a uranium-carbonate phosphate ore using carbon dioxide. Minerals Engineering. 2021;173:107240. http://doi.org/10.1016/j.mineng.2021.107240.
8 Przekop RE, Sztorch B, Pietrowski M, Zielinski M, Martyla A. Alumina and silica preparation via a sol-gel route with carbon dioxide as a pH regulator: a new method for green catalysis. New Journal of Chemistry. 2018;42(9):7060-7065. http://doi.org/10.1039/C8NJ00865E.
9 Mehar J, Shekh A, Nethravathy MU, Chauhan VS, Mudliar S. Automation of pilot-scale open raceway pond: a case study of CO2 -fed pH control on Spirulina biomass, protein and phycocyanin production. Journal of CO2 Utilization. 2019;33:384-393. http://doi.org/10.1016/j.jcou.2019.07.006.
10 Isiramen OE, Bahri PA, Moheimani NR, Vadiveloo A, Shayesteh H, Parlevliet DA. Improving pH control and carbon dioxide utilisation efficiency in microalgae cultivation systems with the use of a proportional-integral + dead-zone control strategy. Bioresource Technology Reports. 2022;17:100917. http://doi.org/10.1016/j.biteb.2021.100917.
11 Freitas AS, Matiolo E, Rodrigues RT. Effect of calcium concentration on calcite flotation from apatite using carbonic gas. REM - International Engineering Journal. 2020;73(2):253. http://doi.org/10.1590/0370-44672019730063.
12 Langelier WF. The analytical control of anti-corrosion water treatment. Journal - American Water Works Association. 1936;28(10):1500. http://doi.org/10.1002/j.1551-8833.1936.tb13785.x.
13 Turrer HD, Gatti AM, Araujo A Jr, Doellinger TM, Zuchi MA, Peres AEC. Uso de coagulantes para manutenção do desempenho da filtragem de minério de ferro. Tecnologia em Metalurgia e Materiais. 2010;7(1-2):42-48. http://doi. org/10.4322/tmm.00701008.
Submitted date:
10/29/2023
Accepted date:
05/13/2024