Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20243038
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Desenvolvimento de chapas grossas de aço API 5L Grau X80 – processamento termomecânico controlado

Development of heavy plates API 5L Grade X80 – thermomechanical control processing

Geraldo Lúcio de Faria; Rodrigo Rangel Porcaro; Leonardo Barbosa Godefroid; Luiz Cláudio Cândido; Ricardo José de Faria

Downloads: 0
Views: 91

Resumo

O Brasil vem aumentando significativamente a produção de óleo, gás e seus derivados. No entanto, para que seja possível explorar e transportar estes recursos de forma economicamente viável e segura, os produtos tubulares de aço vêm sendo utilizados como ferramenta fundamental. Considerando as condições de trabalho cada vez mais agressivas destes tubos sob a óptica de desempenho mecânico e corrosão, este importante segmento industrial tem demandado cada vez mais tecnologia de fabricação e qualidade dos produtos. Neste cenário, percebe-se que a demanda por chapas grossas para manufatura de tubos de aço com costura que atendam aos requisitos do Grau API 5L X80 tem crescido. Entretanto, a fabricação deste produto por processamento termomecânico controlado, sem a necessidade de uma linha de tratamentos térmicos, ainda é um desafio econômico e tecnológico relatado por pesquisadores. Sob este ponto de vista, o presente artigo apresenta o estado da arte sobre a utilização do processamento termomecânico controlado em aços ARBL para a fabricação de chapas grossas majoritariamente bainíticas que atendam aos requisitos do Grau X80 da norma API 5L. A compilação de informações disponibilizada neste trabalho aponta diretrizes relevantes que são de interesse para pesquisadores e para a indústria, especialmente no Brasil.

Palavras-chave

Aço API 5L grau X80; Chapas grossas; Laminação termomecânica; Evolução microestrutural; Desenvolvimentos recentes

Abstract

Brazil has been significantly increasing the production of oil, gas, and their derivatives. However, steel tubular products have been employed as a fundamental tool to exploit and transport these resources economically and safely. Considering the increasingly aggressive working conditions to which these pipes are subjected, this important industrial segment has been increasingly demanding manufacturing technology and product quality from the perspective of mechanical performance and corrosion. In this context, it is evident that the demand for thick plates for manufacturing seam-welded steel pipes that meet the requirements of API 5L X80 Grade has been growing. However, as reported by researchers, manufacturing this product through thermomechanical control processing, without the need for a heat treatment line, remains an economic and technological challenge. From this standpoint, this present paper provides a state-of-the-art overview of the use of thermomechanical rolling in HSLA steels for the production of predominantly bainitic thick plates that comply with the requirements of X80 Grade as per the API 5L standard. The information compilation presented in this work provides relevant guidelines of interest for researchers and the industry, especially in Brazil.

Keywords

API 5L grade X80 steel; Heavy plate; Thermomechanical control processing; Microstructural evolution; Recent developments.

Referências

1. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis. Brasília: ANP; 2018.

2. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis. Brasília: ANP; 2022.

3 Silva VO, Relva SG, Mondragon M, Mendes AB, Nishimoto K, Peyerl D. Building options for the Brazilian pre-salt: a technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration. Resources Policy. 2023;81:103305.

4 Henriques CCD, Joia CJBM, Baptista IP, Guedes FMF. Material selection for brazilian fields. In: Offshore Technology Conference (OTC 2020); 2020; Houston, USA. Houston: Offshore Technology Conference (OTC) ; 2020. Paper Number: OCT 23320.

5 Zhu L, Li N, Jia B, Zhang Y. Fracture response of X80 pipe girth welds under combined internal pressure and bending moment. Materials (Basel). 2023;16:3588.

6 Bai X, He B, Han P, Xie R, Sun F, Chen Z, et al. Corrosion behavior and mechanism of X80 steel in silty soil under the combined effect of salt and temperature. Royal Society of Chemistry. 2021;12:129-147.

7 Schmitt J, Iung T. New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique. 2018;19(8):641-656.

8 Siciliano F, Stalheim DG, Gray JM. Modern high-strength steels for oil and gas transmission pipelines. In: Metals Processing and Manufacturing Conference; 2007; Cairo, Egypt. Cairo: The American Society of Mechanical Engineers (ASME); 2007. p. 19-22.

9 Bott IS, Souza LFG, Texeira JCG, Rios PR. High-strength steel development for pipelines: a Brazilian perspective. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2005;36:443-454.

10 American Petroleum Institute – API. Specification for Line Pipe. API 5L. 46th ed. Washington: API; 2018.

11 Li S, Jiang Z, Li Y, Stalheim DG. Development and production of heavy gauge X70 pipeline for deep water pipe applications at Shougang Steel. In: 9th International Pipeline Conference; 2012; Calgary, Alberta, Canadas. Calgary, Alberta, Canadas: The American Society of Mechanical Engineers (ASME); 2012. IPC2012-90328.

12 Brito VLO, Nunes CA, Barbosa CH, Ratnapuli RC, Alípio PH. Evolução de aços para tubos API utilizados no transporte de óleo e gás. In: CBECIMAT; 2000; São Paulo. São Paulo: Metallum Congressos Técnicos e Científicos; 2000; p. 45801-45813.

13 Gray JM. Development of X-80 HTP line pipe steel over 40 years. In: 69th ABM International Annual Congress; 2014; São Paulo. Brasil. São Paulo: Associação Brasileira de Metalurgia, Materiais e Mineração (ABM); 2014; p. 353-363.

14 Trindade VB, Alves SMS, Cândido LC, Faria GL, Porcaro RR. Características microestruturais e mecânicas ao longo da seção transversal de juntas soldadas em multipasses pelo processo GMAW de um aço API 5L X65Q. Soldagem e Inspeção. 2017;22:217-227.

15 Hashemi SH, Mohammadyani D. Characterization of weldment hardness, impact energy and microstructure in API X65 steel. International Journal of Pressure Vessels and Piping. 2012;98:8-15.

16 Li S, Li J, Ding W, Zhang H. Research and development of heavy gauge X80 pipeline plate utilizing optimized rolling and cooling process. In: The Chinese Society for Metals, editor. HSLA Steels 2015, microalloying 2015 & Offshore Steels 2015. Cham: Springer; 2015. p. 693-698.

17 Stalheim DG, Barnes KR, McCutcheon DB. Alloy design for high-strength oil and gas transmission line pipe steels. In: Proceedings of the International Symposium on Microalloyed Steels for the Oil and Gas Industry. TMS; 2006; Araxá, Brazil. Araxá: TMS (The Minerals, Metals & Materials Society); 2006. p. 73-108.

18 Zurutuza I, Isasti N, Detemple E, Schwinn V, Mohrbacher H, Uranga P. Effect of Nb and Mo additions in the microstructure/tensile property relationship in high strength quenched and quenched and tempered boron steels. Metals. 2021;11(1):29.

19 Hillenbrand HG, Heckmann CJ, Niederhoff KA. X80 Line pipe for large diameter high strength pipelines. In: API X-80 Pipeline Cost Workshop; 2002; Hobart, Australia. Hobart, Australia: ITI Oil & Gas; 2002. p. 35-49.

20 Zhang H, Shaopo L, Wenhua D. Study on the continuous cooling transformation behavior of heavy thickness X80 pipeline steel. In: International Conference on Applied Materials and Manufacturing Technology (ICAMMT); 2019; Singapore. Singapore: IOP Publishing; 2019. 022014.

21 Wu Q, He S, Hu P, Liu Y, Zhonghua Z, Fan C, et al. Effect of finish rolling temperature on microstructure and mechanical properties of X80 pipeline steel by online quenching. Materials Science and Engineering A. 2023;862(18):144496.

22 Li S, Zhu H, Zhou P, Wu H. Microstructure and mechanical properties of heavy X80 pipeline steel. Hot Working Technology. 2001;40(24):85-88.

23 Carbos TR, Ferreira JCF, Souza LFG, Bott IS, Mendes MC. Investigation into the impact toughness of API 5L X80 steel weldments and its relationship with safe welding procedures. Materials Research. 2020;23(6):e20200363.

24 Li S, Zhu H, Zhou P. Microstructure and Mechanical Properties of Heavy X80 Pipeline Steel. Hot Working Technology. 2001;40(24):85-88.

25 Yi H, Xue P, Cui R. Research on the continuous cooling transformation of X80 pipeline steel. Steel Rolling. 2008;25(2):10-12.

26 Liu W, Kang Y, Niu T. Static recrystallization behavior and technological improvement of X80 pipeline steel with heavy thickness produced by hot continuous rolling. Journal of University of Science and Technology Beijing. 2010;32(4):444-449.

27 Kim K. Effect of microalloying and hot rolling parameters on toughness and yield strength of API X80 grade steel strips. In: Mohrbacker H, Hardy Mohrbacher. Fundamentals and application of Mo and Nb alloying in highperformance steels. Vol. 1. Taipei, Taiwan: CBMM, IMOA, TMS; 2014. p. 135-153.

28 Girault E, Jacques P, Ratchev P, Van Humbeeck J, Verlinden B, Aernoudt E. Study of the temperature dependence of the bainitic transformation rate in a multiphase TRIP-assisted steel. Materials Science and Engineering A. 1999;273-275:175-182.

29 Cui J, Zhu W, Chen Z, Chen L. Effect of austenite grain size on the bainitic transformation in a hot-rolled low carbon microalloyed steel. In: 11th International Rolling Conference; 2019; São Paulo, Brasil: ABM (Associação Brasileira de Metalurgia, Materiais e Mineração); 2019. p. 500-507.

30. Nie W, Xin W, Xu T, Shi P, Zhang X. Enhancing the toughness of heavy thick X80 pipeline steel plates by microstructure control. Advanced Materials Research. 2011;194-196:1183-1191.

31 Kong X, Lan L. Optimization of mechanical properties of low carbon bainitic steel using TMCP and accelerated cooling. In: 11th International Conference on Technology of Plasticity; 2014; Nagoya, Japan. Nagoya: Procedia Engineering; 2014. p. 114-119.

32 Palmiere EJ, Garcia CI, De Ardo AJ. Compositional and Microstructural changes which attend reheating and grain coarsening in steels containing niobium. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 1994;25(2):277-286.

33 Bai DQ, Yue A, Maccagno T, Jonas JJ. Static recrystallization of Nb and Nb-B steels under continuous cooling conditions. ISIJ International. 1996;36(8):1084-1093.

34 Stalheim DG, Barbosa RANM, Bastos FMMM, Gorni AA, Rebellato MA. Basic metallurgy/processing design concepts for optimized hot strip structural steel in yield strengths from 300-700MPa. In: 53rd Rolling ABM Week 2016; 2016; Rio de Janeiro, Brazil. Rio de Janeiro: ABM (Associação Brasileira de Metalurgia, Materiais e Mineração); 2016. p. 31-41.

35 Rizzo EMS. Processo de laminação a quente de produtos planos de aço. São Paulo: Associação Brasileira de Metalurgia, Materiais e Mineração; 2011. 346 p.

36 Bai DQ, Yue S, Sun WP, Jonas JJ. Effect of deformation parameters on the no-recrystallization temperature in Nb-bearing steels. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1993;(24):2151-2159.

37 Gorni AA. Cálculo da temperatura de não-recristalização para aços microligados, em função da interação entre a precipitação e recristalização da austenita. Revista Escola de Minas. 1999;52:21-25.

38 Mausavi Anijdan SH, Rezaienan A, Yue S. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels. Materials Characterization. 2012;63:27-38.

39 Calvo J, Jung IJ, Elwazri AM, Bai D, Yue S. Influence of chemical composition on transformation behavior of low carbon microalloyed steels. Materials Science and Engineering A. 2009;520:60-96.

40 Yuan XQ, Liu ZY, Jiao SH, Ma LQ, Wang GD. The onset temperatures of gama-alfa transformation in hot deformed and non-deformed Nb micro alloyed steels. ISIJ International. 2006;46:579-585.

41 Stalheim DG, Muralidharan G. Continuous cooling transformation diagrams use in material design for high strength oil and gas transmission linepipe steels. In: 3rd Baosteel Biennial Academic Conference (BAC); 2008; Shanghai, China. Shanghai: BAOSTEEL; 2008.

42 Cizek P, Wynne BP, Davies CHJ, Muddle BC, Hodgson PD. Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2008;33A(8):1331-1349.

43 Sharma SK, Maheshwari S. A review on welding of high strength oil and gas pipeline steels. Journal of Natural Gas Science and Engineering. 2017;38:203-217.

44 Larzabal G, Isasti N, Rodriguez-Ibabe JM, Uranga P. Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb-Mo and Ti-Mo microalloyed steels. Metals. 2017;7(2):65.

45 Larzabal G, Isasti N, Rodriguez-Ibabe JM, Uranga P. Effect of microstructure on post-rolling induction treatment in a low C Ti-Mo microalloyed steel. Metals. 2018;8:694.

46 Irvine KJ, Pickering FB, Gladman T. Grain-Refined C-Mn sTEELS. Journal of The Iron and Steel lnstitute. 1967;205:161-182.

47 Nodberg H, Arronson B. Solubility of niobium carbide in austenite. Journal of The Iron and Steel lnstitute. 1968;206:1263-1266.

48 Hudd RC, Jones A, Kale MN. A method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride. Journal of the Iron and Steel Institute. 1971;209:121-125.

49 Bai D, Bodnar R, Ward J, Dorricott J, Sande S. Development of Discrete X80 Line Pipe Plate at SSAB Americas. In: Association for Iron and Steel Technology. International Symposium on the Recent Developments in Plate Steels; 2011; Winter Park, USA. Warrendale: Association for Iron and Steel Technology. p. 13-22.

50 Boratto F, Barbosa R, Yue S, Jonas JJ. Effect of chemical composition on critical temperatures of microalloyed steels. In: International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals - THERMEC ‘88. Iron and Steel Institute of Japan; 1988; Tokyo, Japan. Tokyo: Iron and Steel Institute of Japan. p. 383-390.

51 Kreins M, Wilkes J, Wesselmecking S, Krupp U. Effect of phase-selective nanoscale precipitates on the Bauschinger Effect in Austenitic-Ferritic Duplex stainless steel. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2022;53:3906-3917.

52 Yang J, Kim DW, Lee S, Kim YG, Kim W, Sohn SS. Effects of granular bainite and polygonal ferrite on yield point phenomenon in API X65 line-pipe steels. Materials Science and Engineering A. 2022;840:143006.

53 Ouchi C, Sampei T, Kozasu I. The effect of hot rolling condition and chemical composition on the onset temperature of gama-alfa transformation after hot rolling. Transactions of the Iron and Steel Institute of Japan. 1982;22:214-222.

54 Shujun J, Qingyou L, Ba L, Hongmei H. Effects of finish cooling temperature on microstructure and properties of X100 pipeline steels. Materials Science Forum. 2016;850:993-999.

55 Qiao G, Han X, Chen X, Wang X, Liao B, Xiao F. Transformation of M/A constituents during tempering and its effects on impact toughness of weld metals for X80 hot bends. Advances in Materials Science and Engineering. 2019;2019:6429045.

56 Lee DH, Sohn SS, Song H, Ro Y, Lee CS, Lee S, et al. Effects of start and finish cooling temperatures on the yield strength and uniform elongation of strain-based API X100 pipeline steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2018;49:4536-4543.

57 Chen Z, Zhao Z, Qi J, Zhu W, Zhao Y, Chen L. Effect of austenite grain size on the bainitic transformation in a 690MPa grade high-strength multi-functional construction steel. Metals. 2022;12:577.

58 Zhao H, Wynne BP. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Materials Characterization. 2017;123:128-136.

59 Lan LY, Qiu CL, Zhao DW, Gao XH, Du LX. Effect of austenite grain size on isothermal bainite transformation in low carbon microalloyed steel. Materials Science and Technology. 2011;27(11):1657-1663.

60 Hu F, Hodgson PD, Wu KM. Acceleration of the super bainite transformation through a coarse austenite grain size. Materials Letters. 2014;122:240-243.

61 Matsuzaki A, Bhadeshia HKDH. Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Materials Science and Technology. 1999;15:518-522.

62 Zhang G, Bai X. Development and production of heavy gauge X80 and high strength X90 pipeline steels utilizing TMCP/optimized cooling process. In: Proceedings of the 10th International Pipeline Conference; 2014; Canada. Canada: ASME (The American Society of Mechanical Engineers); 2014. V003T07A037

63 Lopes AR. Desenvolvimento de tubo API 5L X80. In: 2° Seminário Brasileiro de Dutos; 1999; Rio de Janeiro, Brazil. Rio de Janeiro: Instituto Brasileiro de Petróleo; 1999.

64 Li S, Ding W, Zhang H. Research of ultrafine bainite X80 pipeline plate for gas compressor station. MATEC Web of Conferences. 2018;175:01026.


Submetido em:
01/12/2023

Aceito em:
01/02/2024

65ef2326a953953c53561712 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections