Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20243042
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Chemical analysis of LED bulb components: strategies for efficient recycling

Análise química de componentes de Lâmpadas LED: estratégias para reciclagem eficiente

Sandra Lúcia de Moraes; Dafne Pereira da Silva; Catia Fredericci; Francisco Junior Batista Pedrosa; Maciel Santos Luz; Elaine Menegon Chermont; Carlos Alberto Pachelli

Downloads: 0
Views: 39

Abstract

Although there are several types of LED lamps on the market, the bulb type is one of the most sold in Brazil. A LED lighting system comprises some components such as base, heat sink, driver, and electronic board that contains the LED packages and a reflector. Each of these, made up of specific materials, involves polymers, metals, and ceramics. With the growth in the use of LED lamps in various sectors (industrial, commercial, and residential) there are several movements towards recycling them. However, it is necessary to know the materials most used in the LED lamp system to create recycling strategies for all components. In this context, the current study aimed to chemically characterize most of the components of bulb-type LED lamps by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), in addition to X-ray fluorescence (FRX) and micro-Raman spectroscopy. The presence of strategic metals such as Ce and Y (rare earths), Si, In and Ga used in semiconductor components could be detected, as well as Cu, whose demand has doubled the price of this metal in recent years. No less important, the presence of Na, Mg, Al, Fe, Ni and Zn was also determined. Recycling these metals, from LED lamps, can reintegrate them into their productive chains.

Keywords

LED; Lamps; Recycling; Chemical characterization

Resumo

Embora existam vários tipos de lâmpadas LED no mercado, a do tipo bulbo é uma das mais vendidas no Brasil. Um sistema de iluminação LED é composto por alguns componentes, tais como: base, dissipador de calor, driver e placa eletrônica que contém os pacotes de LED e um refletor. Cada um desses componentes, formados por materiais específicos, envolve polímeros, metais e cerâmicas. Com o crescimento do uso de lâmpadas desse tipo em diversos setores (industrial, comercial e residencial), existem vários movimentos no sentido de reciclá-las. No entanto, é necessário conhecer os materiais mais utilizados no sistema dessas lâmpadas para criar estratégias de reciclagem de todos os componentes. Nesse contexto, o presente estudo teve como objetivo caracterizar quimicamente a maioria dos componentes de lâmpadas LED, do tipo bulbo, por meio de microscopia eletrônica de varredura (MEV) acoplada à espectroscopia de energia dispersiva (EDS), além de fluorescência de raios X (FRX) e espectroscopia Raman. Pôde ser detectada a presença de metais estratégicos como Ce e Y (terras raras), Si, In e Ga utilizados em componentes semicondutores, assim como Cu cuja demanda dobrou o preço desse metal nos últimos anos. Não menos importante, também foi determinada a presença de Na, Mg, Al, Fe, Ni e Zn. A reciclagem desses metais, a partir das lâmpadas LED, podem reintegra-los em suas cadeias produtivas.

Palavras-chave

LED; Lâmpada, Reciclagem; Caracterização química

Referências

1 Zissis G, Bertoldi P, Serrenho TR. Update on the Status of LED-Lighting world market since 2018, EUR 30500 EN. Luxembourg: Publications Office of the European Union; 2021. http://doi.org/10.2760/759859.

2 Bastos FC. Análise da política de banimento de lâmpadas incandescentes do mercado brasileiro. Rio de Janeiro: Programa de Pós-graduação em Planejamento Energético, COPPE, Universidade Federal do Rio de Janeiro; 2011.

3 Brasil. Ministério de Minas e Energia - MME . Portaria Interministerial no 1.007, de 31 de Dezembro de 2010. Regulamentação Específica que Define os Níveis Mínimos de Eficiência Energética de Lâmpadas Incandescentes. Diário Oficial da União. n. 4, 2011 Jan 6.

4 de Assis D. Comércio registra alta de mais de 100% nas vendas de lâmpadas de LED. 2016 [cited 2024 May 13]. Available at: https://www.fecomercio.com.br/noticia/comercio-registra-alta-de-mais-de-100-nas-vendas-delampadas-de-led

5 Roizenblatt I . O uso de LED revoluciona o setor de iluminação. Revista Potência. 2015;111:22-23.

6 Market Research.com. Brazil LED Lighting Market Overview, 2022 [cited 2024 May 13]. Available at: https://www. marketresearch.com/Bonafide-Research-Marketing-Pvt-Ltd-v4230/Brazil-LED-Lighting-Overview-33095921/

7 Rahman SMM, Pompidou S, Alix T, Laratte B. A review of LED lamp recycling process from the 10 R strategy perspective. Sustainable Production and Consumption. 2021;28:1178-1191. http://doi.org/10.1016/j. spc.2021.07.025.

8 Rahman SMM, Kim J, Lerondel G, Bouzidi Y, Nomenyo K, Clerget L. Missing research focus in end-of-life management of light-emitting diode (LED) lamps. Resources, Conservation and Recycling. 2017;127:256-258. http://doi.org/10.1016/j.resconrec.2017.04.013.

9 Ruiz-Mercado GJ, Gonzalez MA, Smith RL, Meyer DE. A conceptual chemical process for the recycling of Ce, Eu, and Y from LED flat panel displays. Resources, Conservation and Recycling. 2017;126:42-49. http://doi. org/10.1016/j.resconrec.2017.07.009.

10 Pourhossein F, Mousavi SM, Beolchini F. Innovative bio-acid leaching method for high recovery of critical metals from end-of-life light emitting diodes. Resources, Conservation and Recycling. 2022;182:106306. http://doi. org/10.1016/j.resconrec.2022.106306.

11 de Oliveira RP, Benvenuti J, Espinosa DCR. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renewable & Sustainable Energy Reviews. 2021;145:111090. http://doi.org/10.1016/j.rser.2021.111090.

12 Benmamas L, Bouzidi Y, Houset G, Nomenyo K, Bru K, Beaulieu M, et al. Selective separation of plastic LED lamp components using electrodynamic fragmentation for material recovery. Waste Management (New York, N.Y.). 2022;144:210-220. http://doi.org/10.1016/j.wasman.2022.03.024.

13 Qiu Y, Suh S. Economic feasibility of recycling rare earth oxides from end-of-life lighting technologies. Resources, Conservation and Recycling. 2019;150:104432. http://doi.org/10.1016/j.resconrec.2019.104432.

14 Martins TR, Tanabe EH, Bertuol DA. Innovative method for the recycling of end-of-life LED bulbs by mechanical processing. Resources, Conservation and Recycling. 2020;161:104875. http://doi.org/10.1016/j. resconrec.2020.104875.

15 Moraes SL, Silva, DP, Dos Santos MGR. Use of autogenous mill in separation method for recyclable materials in LED lamps. Patent WO 2021/113944 A1. 2021.

16 Associação Brasileira de Normas Técnicas. ABNT NBR 10.004: 2004 - Solid Waste – Classification. Rio de Janeiro: ABNT; 2004.

17 Charitopoulou MA, Papadopoulou L, Achilias DS. Removal of bromine from polymer blends with a composition simulating that found in waste electric and electronic equipment through a facile and environmentally friendly method. Polymers. 2023;15(3):709. http://doi.org/10.3390/polym15030709.

18 Niu L, Xu J, Yang W, Ma B, Kang C. Crystallization, flame retardancy and mechanical properties of poly(butylene terephthalate)/brominated epoxy/nano-Sb2O3 composites dispersed by high energy ball milling. Journal of Macromolecular Science, Part B: Physics. 2018;57(8):572-584. http://doi.org/10.1080/00222348.2018.1493173

19 Cenci MP, Dal Berto FC, Schneider EL, Veit HM. Assessment of LED lamps components and materials for a recycling perspective. Waste Management (New York, N.Y.). 2020;107:285-293. http://doi.org/10.1016/j. wasman.2020.04.028.

20 Dodbiba G, Oshikawa H, Ponou J, Kim Y, Haga K, Shibayama A, et al. Treatment of spent LED light bulbs for recycling of its components: a combined assessment in the context of LCA and cost-benefit analysis. Resources Processing. 2019;66:15-28.

21 Zimmerer C, Matulaitiene I, Niaura G, Reuter U, Janke A, Boldt R, et al. Nondestructive characterization of the polycarbonate - octadecylamine interface by surface enhanced Raman spectroscopy. Polymer Testing. 2019;73:152- 158. http://doi.org/10.1016/j.polymertesting.2018.11.023.

22 Resta V, Quarta G, Lomascolo M, Maruccio L, Calcagnile L. Raman and Photoluminescence spectroscopy of polycarbonate matrices irradiated with different energy 28Si+ ions. Vacuum. 2015;116:82-89. http://doi. org/10.1016/j.vacuum.2015.03.005.

23 Ahmed SF, Yi J-W, Moon M-W, Jang Y-J, Park B-H, Lee S-H, et al. The morphology and mechanical properties of polycarbonate/acrylonitrile butadiene styrene modified by ar ion beam irradiation. Plasma Processes and Polymers. 2009;6:860-865. http://doi.org/10.1002/ppap.200900043.

24 BPS [cited 2024 May 13]. Available at: https://www.alldatasheet.co.nz/datasheet-pdf/view/1132512/BPS/BP3125.html

25 Illés IB, Kékesi T. A comprehensive aqueous processing of waste LED light lamp bulbs to recover valuable metals and compounds. Sustainable Materials Technologies. 2023;35:e00572. http://doi.org/10.1016/j.susmat.2023.e00572.

26 Mir S, Vaishampayan A, Dhawan N. A review on recycling of end-of-life light-emitting diodes for metal recovery. JOM. 2022;74(2):599-611. http://doi.org/10.1007/s11837-021-05043-9.

27 Funsueb N, Limpichaipanit A, Ngamjarurojana A. Electrical properties and microstructure of phase combination in BaTiO3-based Ceramics. Journal of Physics: Conference Series. 2018;1144:012133. http://doi.org/10.1088/1742- 6596/1144/1/012133.

28 Alim MA, Abdullah MZ, Abdul Aziz MS, Kamarudin R. Die attachment, wire bonding, and encapsulation process in LED packaging: a review. Sensors and Actuators. A, Physical. 2021;329:112817. http://doi.org/10.1016/j. sna.2021.112817.

29 Lukowiak A, Wiglusz RJ, Maczka M, Gluchowski P, Strek W. IR and Raman spectroscopy study of YAG nanoceramics. Chemical Physics Letters. 2010;494:279-283. http://doi.org/10.1016/j.cplett.2010.06.033.

30 Abdullin KHA, Kemel’bekov AE, Lisitsyn VM, Mukhamedshina DM, Nemkaeva RR, Tulegenova AT. Aerosol synthesis of highly dispersed Y3Al5O12:Ce3+ phosphor with intense photoluminescence. Physics of the Solid State. 2019;61(10):1840-1845. http://doi.org/10.1134/S1063783419100020.

31 Adarsh UK, Bankapur A, Acharya M, Chidangil S. Influence of static electric field on Raman polarizability of optically trapped polystyrene beads. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2020;228:117726. http://doi.org/10.1016/j.saa.2019.117726.


Submetido em:
01/12/2023

Aceito em:
22/05/2024

66903c22a9539563504e7322 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections