Tecnologia em Metalurgia, Materiais e Mineração
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Biomass and energy connected with iron and steelmaking

Alex Milton Albergaria Campos; Amauri Leal; Sinésio Salles; Paulo Santos Assis

Downloads: 4
Views: 210


This contribution elucidates the global evolution of iron and steelmaking, addressing critical concerns related to greenhouse gas emissions, energy utilization, and biomass integration. According to the findings presented in this paper, the future sustainability of iron and steelmaking, with minimal environmental impact, hinges on the widespread adoption of renewable energy sources. Specifically, the emphasis should be placed on harnessing the untapped potential of waste energy generated during the iron and steelmaking processes. This involves optimizing the utilization of energy derived from agricultural waste, organic waste sourced from urban areas, and livestock waste. By fully capitalizing on these energy sources, a substantial reduction in greenhouse gas (GHG) emissions from the iron and steel industry can be realized over the next 30 years. Consequently, this research endeavors to outline viable pathways for the steel industry to facilitate the decarbonization of their production processes.


Environment; Energy; Iron and steelmaking; Decarbonization; Green house gas.


1 Nippes R, Macruz P, Scaliante M, Filho L. Fischer–Tropsch synthesis using cobalt catalysts supported on graphene materials: a systematic review. Research on Chemical Intermediates. 2023;49:1-28. http://doi.org/10.1007/s11164- 023-05006-6.

2 Holappa L. A General vision for reduction of energy consumption and CO2 emissions from the steel industry. Metals. 2020;10(9):1117-1138.

3 Empresa de Pesquisa Energética. BEN: Balanço Energético Nacional. Relatório síntese. Brasília; EPE; 2020 [cited 2021 Mar 10]. Available at: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energeticonacional-2020

4 International Renewable Energy Agency. Reaching zero with renewables: eliminating CO2 emissions from industry and transport in line with the 1.5 °C climate goal. Abu Dhabi: IRENA; 2020 [cited 2021 Feb 28]. Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Sep/IRENA_Reaching_zero_2020.pdf

5 Wang MJ, Huang YF, Chiueh PT, Kuan WH, Lo SL. Microwave-induced torrefaction of rice husk and sugarcane residues. Energy. 2017;37(1):177-184.

6 International Energy Agency. Global crude steel production by process route and scenario, 2019-2050. Paris: IEA; 2020 [cited 2021 Feb 26]. Available at: https://www.iea.org/data-and-statistics/charts/global-crude-steel-productionby-process-route-and-scenario-2019-2050

7 He K, Wang L, Li X. Review of the energy consumption and production structure of China’s steel industry: current situation and future development. Metals. 2020;10(302):1-18.

8 World Steel Association. World steel in figures. Beijing: WSA; 2022 [cited 2022 Apr 24]. Available at: https:// worldsteel.org/steel-topics/statistics/world-steel-in-figures-2023/

9 McKinsey & Company. Descarbonization challenge for steel. Chicago; 2020 [cited 2021 Mar 29]. Available at: https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel#

10 Assis PS. Technical contribution to CGEE: use of charcoal in the iron and steelmaking: limits of use. Brasília: Ministry of Energy; 2014.

11 Campos AMA, Assis PS, Novack KM. Avaliação técnica e ambiental da injeção da casca da Moringa oleífera em altos-fornos a coque. Tecnologia em Metalurgia, Materiais e Mineração. 2019;16(esp):1-5.

12 Babich A, Senk D, Solar J, Marco I. Efficiency of biomass use for blast furnace injection. ISIJ International. 2019;59(12):2212-2219.

13 Campos AMA, Assis PS, Novack KM. Aspectos econômicos e ambientais do uso de biomassas na siderurgia. In: Anais do 48º Seminário de Redução de Minérios e Matérias-Primas; 2018; São Paulo. São Paulo: ABM; 2018. p. 21-32.

14 Qin L, Han J, Ye W, Zhang S, Yan Q, Yu F. Characteristics of coal and pine sawdust Co-carbonization. Energy & Fuels. 2014;28(2):848-857.

15 Carvalho LAL, Campos AMA, Assis PS. Quality evaluation of metallurgical coke produced with sawdust and different mixture of coal. REM - International Engineering Journal. 2021;74(2):219-223.

16 Silva AM. Estudo da utilização da biomassa em substituição parcial ao carvão mineral no processo de fabricação do ferro gusa em alto-forno [tese]. Guaratinguetá: Programa de Pós-graduação em Engenharia Mecânica, Universidade Estadual Paulista; 2008.

17 Ueki Y, Nunome Y, Yoshiie R, Naruse I, Nishibata Y, Aizawa S. Effect of woody biomass addition on coke properties. ISIJ International. 2014;54(11):2454-2460.

18 Liziero G, Marlon A, Dornelas P, Dias N, Moreira V. Avaliação da adição de biorredutor na mistura de carvões minerais na qualidade do coque metalúrgico. In: Anais do V Congresso Brasileiro de Carvão Mineral; 2017; Criciúma. Brasília: IBRAM; 2017.

19 Flores BD, Gums A, Fraga MT, Nicolodi A, Agra AA, Machado J, et al. Alternativas para diminuir a reatividade do carvão vegetal visando a produção de biocoque. In: Anais do 49° Seminário de Redução de Minérios e MatériasPrimas; 2019; São Paulo. São Paulo: ABM; 2019. p. 404-415.

20 Mathieson JG, Somerville MA, Deev A, Jahanshahi S. Utilization of biomass as an alternative fuel in ironmaking. In: Lu L, editor. Iron ore. Oxford: Woodhead Publishing; 2015. p. 581-613.

21 Montiano MG, Díaz-Faes E, Barriocanal C. Partial briquetting vs direct addition of biomass in coking blends. Fuel.


22 Mousa E, Wang C, Riesbeck J, Larsson M. Biomass applications in iron and steel industry: an overview of challenges and opportunities. Renewable & Sustainable Energy Reviews. 2016;65:1247-1266.

23 Campos AMA, Khozhanov N, Assis PS, Tursunbaev K, Masatbayev M. Economic and environmental analyses of biomass torrefaction for injection as pulverized material in blast furnaces. REM - International Engineering Journal. 2021;74(4):471-482.

24 Assis C, Tenório J, Assis P, Nath N. Experimental simulation and analysis of agricultural waste injection as an alternative fuel for blast furnace. ACS Energy&Fuels. 2014;28:7268-7273.

25 Oliveira RS, Assis CFC, Assis PS. Estudo da injeção de misturas de casca de eucalipto com carvão mineral em altoforno. In: Anais do 45º Ironmaking / 16º Iron Ore / 3º Agglomeration; 2016; Rio de Janeiro. São Paulo: ABM; 2016. p. 214-219.

26 International Energy Agency. Global energy review: CO2 emissions in 2021. Global emissions rebound sharply to highest ever level. Paris: IEA; 2022 [cited 2022 Apr 24]. Available at: https://iea.blob.core.windows.net/assets/ c3086240-732b-4f6a-89d7-db01be018f5e/ GlobalEnergyReviewCO2Emissionsin2021.pdf

27 Wang RQ, Jiang L, Wang YD, Roskilly AP. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: a review. Journal of Cleaner Production. 2020;274:122997. http://doi. org/10.1016/j.jclepro.2020.122997.

28 Pinto RGD, Szklo AS, Rathmann R. CO2 emissions mitigation strategy in the Brazilian iron and steel sector: from structural to intensity effects. Energy Policy. 2018;114:380-393. http://doi.org/10.1016/j.enpol.2017.11.040.

29 Assis PS. Personal contacts based on his study on using biowastes for iron and steel production. [S.l.]; 2018.

30 Martins ME. Potencial de utilização do biogás como combustível auxiliar em altos-fornos brasileiros [tese]. Ouro Preto: REDEMAT/UFOP-UEMG; 2017. 140 p.

Submetido em:

Aceito em:

66201e16a953953d7717e532 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections