Study of the compositional and melting characteristics of some Brazilian and Congolese tin slags
Daniel Mapa Clemente; Rafaela de Oliveira Teixeira Menezes; Heitor Vieira Damaso; Johne Jesus Mol Peixoto; Carlos Antônio da Silva
Abstract
Knowledge of the melting behavior of tin slags is essential to optimize the power input in the furnace during processing of cassiterite since it influences the energy required to melt the slag. Furthermore, the melting point of a slag depends on its composition, making it highly relevant. Considering these aspects, industrial tin slags from Brazil and DR Congo were analyzed by EDXRF and their melting temperatures were measured using a softening and melting furnace. The Brazilian slags presented a higher content of ZrO2, as well as varying levels of Nb2 O5 , TiO2 , Al2 O3 , among others. This is related to contaminations of minerals in the cassiterite such as zirconite, ilmenite, and columbite. Most Brazilian samples melted below 1533K, contrasting with a previous study which indicated a range of 1603-1801K. The Congolese slags were not as reduced as those from Brazil and greater content of SnO2 and Ta2 O5 were measured. These Congolese slags melted on average at temperatures slightly above those from Brazil, which is mostly due to the greater SnO2 content. Levels of different oxides were plotted against the measured melting temperatures and a preliminary prediction model was developed. This may assist smelters to estimate their slag’s melting point, potentially leading to an optimization of energy consumption and Sn losses during processing of Brazilian or Congolese ores/slags.
Keywords
Referências
1 International Tin Association. Tracking tin use. 2020. [cited 2024 Jan 2]. Available at: https://www.internationaltin. org/how-is-tin-used
2 Graf GG. Tin, tin alloys, and tin compounds. In: Ullmann’s encyclopedia of industrial chemistry. 6th ed. New York: Wiley-VCH; 2000. [cited 2024 Jan 2]. Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/14356007.a27_049
3 Xu H, Li S, Zhang C, Chen X, Liu W, Zheng Y, et al. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy & Environmental Science. 2019 [cited 2024 Jan 2];12(10):2991-3000. Available at: https://pubs.rsc.org/en/content/articlelanding/2019/ee/c9ee01404g
4 Wang G, Aubin M, Mehta A, Tian H, Chang J, Kushima A, et al. Stabilization of Sn anode through structural reconstruction of a Cu–Sn intermetallic coating layer. Advanced Materials. 2020 [cited 2024 Jan 2];32(42):2003684. Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202003684
5 Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen HT, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy. 2020 [cited 2024 Jan 2];5(11):870-880. Available at: https://www.nature.com/articles/s41560-020-00705-5
6 International Tin Association. Global resources and reserves. 2020. [cited 2024 Jan 2]. Available at: https://www. internationaltin.org/wp-content/uploads/2020/02/Global-Resources-Reserves-2020-Update.pdf
7 Wright P. Extractive metallurgy of tin. 2nd ed. Amsterdam: Elsevier Scientific Publish Company; 1982.
8 Maia F, Veiga MM, Stocklin-Weinberg R, Marshall BG, Constanzo C, Hariojati N, et al. The need for technological improvements in Indonesia’s artisanal cassiterite mining sector. The Extractive Industries and Society. 2019 [cited 2024 Jan 2];6(4):1292-1301. Available at: https://www.sciencedirect.com/science/article/abs/pii/ S2214790X19301418
9 Encinas JEJ. Termodinámica de la fusión reductora de estaño. Revista Metalúrgica UTO. 2015 [cited 2024 Jan 2]:3-17.
10 Zulhan Z, Ryanta IG. Utilization of gypsum byproduct as fuming agent for tin smelting slag. Journal of Sustainable Metallurgy. 2018 [cited 2024 Jan 2];4:388-394. Available at: https://link.springer.com/article/10.1007/s40831-018-0185-1
11 Clemente DM, da Silva CA, Peixoto JJ, de Oliveira JR, de Souza RM. Investigation of the presence of metallic phases in brazilian tin-slags. Journal of Materials Research and Technology. 2023 [cited 2024 Jan 2];24:6861-6875. Available at: https://www.sciencedirect.com/science/article/pii/S2238785423009468
12 Allain E, Kanari N, Diot F, Yvon J. Development of a process for the concentration of the strategic tantalum and niobium oxides from tin slags. Minerals Engineering. [cited 2024 Jan 2];2019;134:97-103. Available at: https:// www.sciencedirect.com/science/article/abs/pii/S0892687519300482
13 Eisenhüttenleute VD. Slag atlas. Dusseldorf: Verlag Stahleisen; 1995.
14 Barin I. Thermochemical data of pure substances. Weinheim: VCH Verlagsgesellschaft GmbH; 1995.
15 Chase MW, National Information Standards Organization (US). NIST-JANAF thermochemical tables. Washington: American Chemical Society; 1998.
16 Silva CA, Silva IA, Castro LFA, Tavares RP, Seshadri V. Termodinâmica metalúrgica. São Paulo: Blucher; 2018.
17 German Institute for Standardization. DIN 51730:2007-2009: Testing of Solid Fuels: Determination of Fusibility of Fuel Ash. Berlim: German Institute for Standardization; 2007.
18 Wang H, Zhang T, Zhu H, Li G, Yan Y, Wang J. Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO–based refining flux. ISIJ International. 2011 [cited 2024 Jan 2];51(5):702-706. Available at: https://www.jstage.jst.go.jp/article/isijinternational/51/5/51_5_702/_pdf
19 Li J, Wang SJ, Xia YJ, Kong H. Study on dephosphorisation of hot metal pretreatment with Al2O3 to replace CaF2 in slag. Ironmaking & Steelmaking. [cited 2024 Jan 2];2015;42(1):70-73. http://doi.org/10.1515/htmp-2020-0090.
20 Jiang YJ, Deng YC, Bu WG. Pyrometallurgical extraction of valuable elements in Ni-metal hydride battery electrode materials. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2015 [cited 2024 Jan 2];46:2153-2157. Available at: https://link.springer.com/article/10.1007/s11663-015-0362-6
21 Diao J, Qiao Y, Liu X, Zhang X, Qiu X, Xie B. Slag formation path during dephosphorization process in a converter. International Journal of Minerals Metallurgy and Materials. [cited 2024 Jan 2];2015;22:1260-1265. Available at: https://link.springer.com/article/10.1007/s12613-015-1193-9
22 Zhao J, Zhao Z, Cui Y, Shi R, Tang W, Li X, et al. New slag for nickel matte smelting process and subsequent Fe extraction. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2018 ;49:304-310. http://doi.org/10.1007/S11663-017-1145-Z.
23 Cai Z, Song B, Yang Z, Li L. Effects of CeO2 on melting temperature, viscosity, and structure of CaF2-bearing and B2O3-containing mold fluxes for casting rare earth alloy heavy rail steels. ISIJ International. 2019 [cited 2024 Jan 2];59(7):1242-1249. Available at: https://www.jstage.jst.go.jp/article/isijinternational/advpub/0/advpub_ISIJINT2018-760/_pdf
24 Zhao Z, Zhao J, Tan Z, Qu B, Lu L, Cui Y. Effect of the heating rate and premelting process on the melting point and volatilization of a fluorine-containing slag. Scientific Reports. 2020 [cited 2024 Jan 2];10(1):11254. Available at: https://www.nature.com/articles/s41598-020-68210-z
25 Brocchi EA, Moura FJ. Chlorination methods applied to recover refractory metals from tin slags. Minerals Engineering. 2008 [cited 2024 Jan 2];21(2):150-156. Available at: https://www.sciencedirect.com/science/article/ abs/pii/S0892687507002270
26 Silva E Fo, Price RF. Development of the Mamore tin smelter, Brazil. In: Mining Latin America/Minería Latinoamericana. Dordrecht: Springer; 1986. p. 347-359.
27 Dalimunthe DY, Aldila H, Nuryadin A. Optimization on the purification of cassiterite from low-grade cassiterite concentrate. IOP Conference Series: Earth and Environmental Science. 2020 [cited 2024 Jan 2];599(1):012002. Available at: https://iopscience.iop.org/article/10.1088/1755-1315/599/1/012002
28 Mudzanapabwe NT, Chinyamakobvu OS, Simbi DJ. In situ carbothermic reduction of a ferro-columbite concentrate in the recovery of Nb and Ta as metal matrix composite from tin smelting slag waste dump. Materials & Design. 2004 [cited 2024 Jan 2];25(4):297-302. Available at: https://www.sciencedirect.com/science/article/abs/pii/ S0261306903002310
29 De Oliveira JM, Anes IA, Coleti JL, Espinosa DC, de Carvalho MS, Tenório JA. Niobium and tantalum recovery from the primary source and from tin slag, an industrial challenge: a review. Canadian Journal of Chemical Engineering. 2023 [cited 2024 Jan 2];101(4):1743-1761. Available at: https://onlinelibrary.wiley.com/doi/ abs/10.1002/cjce.24621
30 Köck W, Paschen PJ. Tantalum: processing, properties and applications. JOM. [cited 2024 Jan 2];1989;41:33-39. Available at: https://link.springer.com/article/10.1007/BF03220360
31 USGS. Mineral Commodity summaries 2023. Tantalum 2023 [cited 2024 Jan 2]. Available at: https://pubs.usgs.gov/ periodicals/mcs2023/mcs2023-tantalum.pdf
32 Yu Y, Li L, Sang XL. Removing tin from tin-bearing iron concentrates with sulfidation roasting using high sulfur coal. ISIJ International. 2016 [cited 2024 Jan 2];56(1):57-62. Available at: https://www.jstage.jst.go.jp/article/ isijinternational/56/1/56_ISIJINT-2015-428/_html/-char/en
33 Jiang W, Tian L, Hao S, Bo H, Ma T. A new method for evaluating the melting performance of the slag. Ironmaking & Steelmaking. 2023 [cited 2024 Jan 2];50(7):1-7. Available at: https://www.tandfonline.com/doi/full/10.1080/0301923.320.232.165.520
34 Hidde J, Guguschev C, Klimm D. Thermal analysis and crystal growth of doped Nb2O5. Journal of Crystal Growth. [cited 2024 Jan 2];2019;509:60-65. Available at: https://www.sciencedirect.com/science/article/abs/pii/S002202481830647X
35 Chen Z, Xu Z, Zhao H. Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles. Proceedings of the Combustion Institute. 2021 [cited 2024 Jan 2];38(4):6743-6751. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1540748920304089