Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20243070
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Influence of goethite on the Transportable Moisture Limit of iron ore fines

Influência da goethita no Limite de Umidade Transportável de finos de minério de ferro

Raphael Lessa de Paula; Rodrigo Fina Ferreira; Rosa Malena Fernandes Lima

Downloads: 2
Views: 253

Abstract

Iron ore is a major seaborne commodity, and its transport is regulated by the International Maritime Organization (IMO). To prevent excess moisture related accidents, the IMO sets a Transportable Moisture Limit (TML) for iron ore fines, which is the moisture content at which the material reaches 80% saturation, determined through laboratory tests. Recent research has shown that TML is influenced by a variety of factors, including particle size distribution, mineralogical composition, and solids density. However, the influence of goethite on TML has not been fully explored, and this was the subject of the present work. The results show that goethite content is positively correlated with TML. Samples with higher goethite content exhibited reduced compaction, leading to larger void volumes within the compacted material. This reduced packing density likely contributes to the higher TML observed. Goethite’s lower solids density is also a relevant contributing factor. Further research is needed to understand the specific mechanisms underlying the differences in compaction behaviour and its impact on different iron ore compositions.

Keywords

Iron ore fines; Transportable Moisture Limit; Goethite

Resumo

O minério de ferro é uma das principais commodities transportadas via marítima e seu transporte é regulamentado pela Organização Marítima Internacional (IMO). Para prevenir acidentes relacionados a excesso de umidade da carga, a IMO estabelece um Limite de Umidade Transportável (TML) para os finos de minério de ferro, que corresponde à umidade na qual o material atinge 80% de saturação, determinada por testes laboratoriais. Pesquisas recentes demonstraram que o TML é influenciado por diversos fatores, incluindo granulometria, composição mineralógica e densidade dos sólidos. No entanto, a influência da goethita no TML não foi explorada a fundo, tendo sido o objeto de estudo do presente trabalho. Os resultados mostraram que o teor de goethita está positivamente correlacionado com o TML. Amostras com maior participação de goethita apresentaram menor compactação, levando a um maior volume de vazios no material compactado. Esta menor densidade de empacotamento contribui para o TML mais elevado. A menor densidade dos sólidos da goethita também é um fator contribuinte relevante. Pesquisas adicionais são necessárias para entender os mecanismos específicos relacionados às diferenças no comportamento frente à compactação e seu impacto em diferentes composições de minério de ferro.

Palavras-chave

Finos de minério de ferro; Limite de Umidade Transportável; Goethita

Referências

1 International Maritime Organization – IMO. International Maritime solid bulk cargoes code. London: IMO; 2022.

2 Ferreira RF, Pereira TM, Lima RMF. A model for estimating the PFD80 transportable moisture limit of iron ore fines. Powder Technology. 2019;345:329-337.

3 Ferreira RF. Modelos para previsão do limite de umidade transportável de finos de minério de ferro [thesis]. Ouro Preto: Universidade Federal de Ouro Preto; 2019.

4 Ferreira RF, Lima RMF. Relationship between particle size distribution and the PFD80 transportable moisture limit of iron ore fines. Powder Technology. 2023;414:118072.

5 Ferreira RF, Lima RMF. Influência da massa específica dos sólidos no TML de finos de minério de ferro. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of the Proceedings of the 22nd Brazilian Mining Symposium; 2023 Aug. 1-3; São Paulo, Brazil. São Paulo: ABM; 2023.

6 Amorim LQ, Alckmim FF. New ore types from the Cauê banded iron-formation, Quadrilátero Ferrífero, Minas Gerais, Brazil - Responses to the growing demand. In: Australasian Institute of Mining and Metallurgy. Proceedings of Iron Ore Conference; 2011 Jul. 11-13; Perth, Austrália. Carlton: AusIMM; 2011.

7 Iron Ore Fines Technical Working Group – IOFTWG. Submission for evaluation and verification: terms of reference. London; 2013.

8 Iron Ore Fines Technical Working Group – IOFTWG. Submission for evaluation and verification: iron ore Proctor Fagerberg test for iron ore fines. London; 2013.

9 Iron Ore Fines Technical Working Group – IOFTWG. Submission for evaluation and verification: marine report. London; 2013.

10 Iron Ore Fines Technical Working Group – IOFTWG. Submission for evaluation and verification: reference tests. London; 2013.

11 Iron Ore Fines Technical Working Group – IOFTWG. Submission for evaluation and verification: research synopsis and recommendations. London; 2013.

12 Minitab LLC. MinitabTM 21.1. 2021 [cited 2023 Jun 30]. Available at: https://www.minitab.com

13 American Society for Testing and Materials – ASTM. ASTM D5550-14: standard test method for specific gravity of soil solids by gas pycnometer. West Conshohocken: ASTM International; 2014.

14 International Organization for Standardization – ISO. ISO 9516-1:2003: iron ores: determination of various elements by X-ray fluorescence spectrometry: part 1: comprehensive procedure. Geneva: ISO; 2003.

15 R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022 [cited 2023 Jun 30]. Available at: http://www.R-project.org/

16 Klein C, Dutrow B. Manual of mineral science. 23rd ed. New York: Jonh Wiley & Sons; 2007.


Submetido em:
25/01/2024

Aceito em:
08/07/2024

66c77407a953951e834d4cf4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections