Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20243128
Tecnologia em Metalurgia, Materiais e Mineração
Original Article

Magnetic and electrostatic separation to increase tin in heavy minerals concentrate of Rondônia Tin Province

Gustavo Simões de Araújo; Júlia Guimarães Sanches; Maurício Guimarães Bergerman; Guilherme José Ramos de Oliveira; Daniela Gomes Horta

Downloads: 0
Views: 41

Abstract

The Rondônia Tin Province (RTP) reserves display several valuable minerals, such as cassiterite (SnO2 ), columbitetantalite ((Fe,Mn)(Nb,Ta)2 O6 ), and ilmenite (FeTiO3 ). This work evaluated the use of magnetic and electrostatic separation of heavy minerals concentrate from gravity separation of an RTP industrial plant to targeting a high grade cassiterite concentrate (>55% of Sn) for metallurgical use. Two samples were collected from the concentrate of shaking tables and spirals. The samples were characterized by determining their chemical composition and particle size distribution. Dry magnetic separation was investigated by increasing the field intensities, followed by electrostatic separation in nonmagnetic products. Wet magnetic separation was also investigated by increasing the field intensities using a scavenger stage. Dry magnetic separation followed by electrostatic separation was the most promising concentration strategy. Dry magnetic separation increased the Sn content from 39.24%-35.57% in the gravimetric separation concentrates to 57.21%-45.15%, with metallurgical recoveries of 87.33%-90.23%. In addition, electrostatic separation elevated the Sn content even more to 66.82%-71.54%, with metallurgical recovery of 75.67%-78.60%, respectively.

Keywords

Magnetic separation; Electrostatic separation; Heavy minerals; Cassiterite

References

1 Guimarães FS, Oliveira ALR, Amorim LED, Rios FJ, Lehmann B, Hernández CR, et al. Lithium-mica composition as pathfinder and recorder of Grenvillian-age greisenization, Rondonia Tin Province, Brazil. Chemie der Erde. 2021;81(2):125737. http://doi.org/10.1016/j.chemer.2020.125737.

2 Debowski BP, Alves MI, Santos AC, Tavares AD Jr, Geraldes MC. Contribution to the understanding of the Rondonia Tin Province granites (SW Amazonian Craton) origin using U-Pb and Lu-Hf in zircon by LA-ICPMS: implications to A-type granite genesis. Journal of the Geological Survey of Brazil. 2019;3(3):151-164. http://doi. org/10.29396/jgsb.2019.v2.n3.2.

3 Lamarão CL, Marques GT, Oliveira DC, Costi HT, Borges RMK, Dallagnol R. Morphology and composition of zircons in rare metal granites from Brazilian tin provinces. Journal of South American Earth Sciences. 2018;84:1-15. http://doi.org/10.1016/j.jsames.2018.03.003.

4 Bettencourt JS, Tosdal RM, Leite WB Jr, Payolla BL. Mesoproterozoic rapakivi granites of the Rondônia Tin Province, southwestern border of the Amazonian craton, Brazil—I. Reconnaissance U–Pb geochronology and regional implications. Precambrian Research. 1999;95:41-67. http://doi.org/10.1016/S0301-9268(98)00126-0

5 Payolla BL, Bettencourt JS, Kozuch M, Leite WB Jr, Fetter AH, Van Schmus WR. Geological evolution of the basement rocks in the east-central part of the Rondônia Tin Province, SW Amazonian craton, Brazil: U–Pb and Sm-Nd isotopic constraints. Precambrian Research. 2002;119(1-4):141-169. http://doi.org/10.1016/S0301- 9268(02)00121-3.

6 Bowles JFW. Cassiterite. In: Alderton D, Elias SA, editors. Encyclopedia of geology. 2nd ed. Oxford: Elsevier; 2021.

7 Sreenivas T, Srinivas K, Natarajan R, Padmanabhan NPH. Padmanabhan. Na integrated process for the recovery of tungsten and tin from a combined wolframite-scheelite-cassiterite concentrate. Mineral Processing and Extractive Metallurgy Review. 2004;25(3):193-203. http://doi.org/10.1080/08827500490441332.

8 Wills BA, Atkinson K. Some observations on the fracture and liberation of mineral assemblies. Minerals Engineering. 1999;6(7):697-706. http://doi.org/10.1016/0892-6875(93)90001-4.

9 Wright PA. Extractive metallurgy of tin. 2nd ed. New York: Elsevier Scientific Publishing Company Press; 1982.

10 Sampaio JA, Luz AB, France SCA, Gonzaga LM. Separação magnética e eletrostática. In: Centro de Tecnologia Mineral, editor. Tratamentos de minérios. 6ª ed. Rio de Janeiro: CETEM/MCTIC; 2018. p. 341-379 [cited 2023 Feb 15]. Available at: http://mineralis.cetem.gov.br/handle/cetem/2180

11 Buch T, Marbler H, Haubrich F, Trinkler M. Investigation of tin and tantalum ores from the Rondônia Tin Province, northern Brazil, to develop optimized processing technologies. Porto Velho: CPRM; 2018. Report [cited 2022 Dec 25]. Available at: https://rigeo.cprm.gov.br/handle/doc/20331

12 Campos JA, Delboni H Jr. Utilização de separadores magnéticos de alta intensidade e eletrostáticos na concentração columbita-tantalita e cassiterita. In: Proceedings of the XIX National Meeting on Ore Treatment and Extractive Metallurgy; 2002; Recife, Brazil. Rio de Janeiro: CETEM; 2002. p. 358-364.

13 Buchmann M, Schach E, Tolosana-Delgado R, Leißner T, Astoveza J, Kern M, et al. Evaluation of magnetic separation efficiency on a cassiterite-bearing skarn ore by means of integrative SEM-based image and XRF–XRD data analysis. Minerals. 2018;8(9):390. http://doi.org/10.3390/min8090390.

14 Abd El-Rahman MK, Youssef MA, Helal NH, El-Rabiei MM, Elsaidy SR. Experimental design technique on recovery of fine cassiterite from Igla placer ore of Egypt. The Journal of Ore Dressing. 2009 [cited 2023 Nov 21];11:24-32. Available at: https://www.researchgate.net/profile/El-Sayed-Hassan-2/publication/269159285

15 Zhang Y, Wang J, Cao C, Su Z, Chen Y, Lu M, et al. New understanding on the separation of tin from magnetitetype, tin-bearing tailings via mineral phase reconstruction processes. Journal of Materials Research and Technology. 2019;6(6):5790-5801. http://doi.org/10.1016/j.jmrt.2019.09.048.

16 Mattioli MV. Caracterização mineralógica do rejeito magnético (Pilha 2) da frente de lavra Gilberto Kubotani, Mina Bom Futuro, Rondônia [monografia]. Rio Claro: Universidade Estadual Paulista “Júlio de Mesquita Filho”; 2022.

17 Banerjee SK. Origin of weak ferromagnetism and remanence in natural cassiterite crystals. Journal of Geophysical Research. 1969;74(15):3789-3795. http://doi.org/10.1029/JB074i015p03789.

18 Grubb PLC, Hannaford P. Magnetism in cassiterite. Mineralium Deposita. 1969;1(2):148-171. http://doi. org/10.1007/BF00206184.


Submitted date:
07/31/2024

Accepted date:
11/12/2024

67864f29a95395592e337883 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections