Efeitos da combinação de etermonoamina e eterdiamina na flotação de minério de ferro
Effects of ethermonoamine and etherdiamine combination on iron ore flotation
Camila Goes Mattioli; Geriane Macedo Rocha
Resumo
A flotação é um método de concentração consolidado na indústria do minério de ferro e os reagentes utilizados nessa etapa desempenham papel fundamental na separação dos minerais de interesse (concentrado) e dos minerais de ganga (rejeito). Este estudo avaliou a influência da mistura de etermonoamina e eterdiamina na flotação catiônica reversa de minério de ferro itabirítico da empresa Samarco, localizada no Quadrilátero Ferrífero, em Minas Gerais. Foram testadas, em escala de bancada, diferentes proporções na mistura desses reagentes em amostras da flotação de grossos (-150+44µm). Como depressor, foi utilizada a fécula de mandioca. O material da alimentação e os produtos de cada um dos testes passaram por análise química em fluorescência de raios-x e análise mineralógica em microscópio óptico. Os resultados demonstraram que o uso de 100% de eterdiamina na flotação de grossos apresentou o melhor índice de seletividade e recuperação metalúrgica, seguida da combinação de 10% etermonoamina e 90% de eterdiamina. Além disso, constatou-se que houve nesses dois casos menor perda de hematita especular para o rejeito.
Palavras-chave
Abstract
Flotation is a well-established concentration method in the iron ore industry, and the reagents used in this stage play a crucial role in the separation of valuable minerals (concentrate) from gangue minerals (tailings). This study evaluated the influence of a mixture of ethermonoamine and etherdiamine on the reverse cationic flotation of itabirite iron ore from the Samarco company, located in the Quadrilátero Ferrífero in Minas Gerais, Brazil. Different proportions of these reagents were tested in bench scale on coarse flotation samples (-150+44µm). Cassava starch was used as depressant. The feed material and the products from each test were analyzed chemically by X-ray fluorescence and mineralogically by optical microscopy. The results showed that using 100% etherdiamine in coarse flotation presented the best selectivity and metallurgical recovery indices, followed by the combination of 10% ethermonoamine and 90% etherdiamine. Additionally, it was found that in these two cases, there was a lower loss of specular hematite to the tailings.
Keywords
Referências
1 Houot R. Beneficiation of iron ore by flotation — review of industrial and potential applications. International Journal of Mineral Processing. 1983;10(3):183-204. http://doi.org/10.1016/0301-7516(83)90010-8.
2 Araujo AC, Viana PMR, Peres AEC. Reagents in iron ores flotation. Minerals Engineering. 2005;18:219-224. http:// doi.org/10.1016/j.mineng.2004.08.023.
3 Papini RM, Brandão PRG, Peres A. Cationic flotation of iron ores: amine characterization and performance. Mining, Metallurgy & Exploration. 2001;18(1):5-9. http://doi.org/10.1007/BF03402863.
4 Rath SS, Sahoo H. A review on the application of starch as depressant in iron ore flotation. Mineral Processing and Extractive Metallurgy Review. 2020;43(1):122-135. http://doi.org/10.1080/08827508.2020.1843028.
5 Shrimali K, Atluri V, Wang Y, Bacchuwar S, Wang X, Miller JD. The nature of hematite depression with corn starch in the reverse flotation of iron ore. Journal of Colloid and Interface Science. 2018;524(agosto):337-349. http://doi. org/10.1016/j.jcis.2018.04.002.
6 Jordens A, Marion C, Kuzmina O, Waters KE. Surface chemistry considerations in the flotation of bastnäsite. Minerals Engineering. 2014;66-68:119-129. http://doi.org/10.1016/j.mineng.2014.04.013.
7 Hanumantha Rao K, Antti BM, Forssberg KSE. Flotation of mica minerals and selectivity between muscovite and biotite while using mixed anionic/cationic collectors. Mining, Metallurgy & Exploration. 1990;7(3):127-132. http:// doi.org/10.1007/BF03403286.
8 Vidyadhar A, Rao KH, Chernyshova IV. Mechanisms of amine–feldspar interaction in the absence and presence of alcohols studied by spectroscopic methods. Colloids and Surfaces. A, Physicochemical and Engineering Aspects. 2003;214(1-3):127-142. http://doi.org/10.1016/S0927-7757(02)00361-8.
9 Vidyadhar A, Rao KH, Chernyshova IV, Pradip E, Forssberg KSE. Mechanisms of amine–quartz interaction in the absence and presence of alcohols studied by spectroscopic methods. Journal of Colloid and Interface Science. 2002;256(1):59-72. http://doi.org/10.1006/jcis.2001.7895.
10 Pereira SRN, Peres AEC, Araujo AC, Valadão GES. The use of non-polar oil in the reverse cationic flotation of an iron ore. In: Proceedings of 23rd International Mineral Processing Congress. Turkey; Istanbul Technical University; 2006. p. 644-48.
11 Filippov LO, Severov VV, Filippova IV. An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing. 2014;127(março):62-69. http://doi.org/10.1016/j.minpro.2014.01.002.
12 Vieira AM, Peres AEC. The effect of amine type, ph, and size range in the flotation of quartz. Minerals Engineering. 2007;20(10):1008-1013. http://doi.org/10.1016/j.mineng.2007.03.013.
13 Fan G, Wang L, Cao Y, Li C. Collecting agent–mineral interactions in the reverse flotation of iron ore: a brief review. Minerals (Basel). 2020;10(8):681. http://doi.org/10.3390/min10080681.
14 Matos VE, Nogueira SCS, Kowalczuk PB, Silva GR, Peres AEC. Differences in etheramines froth properties and the effects on iron ore flotation. Part I: two-phase systems. Mineral Processing and Extractive Metallurgy Review. 2021;43(2):209-216. http://doi.org/10.1080/08827508.2021.1875461.
15 Matos VE, Nogueira SCS, Silva G, Kowalczuk PB, Peres AEC. Differences in etheramines froth properties and the effects on iron ore flotation. Part II: Three-phase systems. Mineral Processing and Extractive Metallurgy Review. 2021;43(2):243-250. http://doi.org/10.1080/08827508.2021.1888725.
16 Gaudin AM. Principles of mineral dressing. New Delhi: Tata McGraw-Hill; 1939.
17 Yang B, Yin W, Zhu Z, Wang D, Han H, Fu Y, et al. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technology. 2019;354(setembro):358-368. http://doi.org/10.1016/j. powtec.2019.06.017.
18 Fuerstenau DW. Fine particles flotation. In: Somasundaran P. (ed.), Fine particles processing., New York, American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; 1980. p. 669-705
19 Pease JD, Young MF, Curry D, Johnson NW. Improving fines recovery by grinding finer. Mineral Processing and Extractive Metallurgy. 2010;119(4):216-222. http://doi.org/10.1179/037195510X12816242170852.
20 Turrer H, Araujo A, Papini R, Peres AEC. Iron ore flotation in the presence of polyacrylamides. Mineral Processing and Extractive Metallurgy. 2007;116(2):81-84. http://doi.org/10.1179/174328507X163878.
21 Farrokhpay S, Filippov L, Fornasiero D. Flotation of fine particles: a review. Mineral Processing and Extractive Metallurgy Review. 2021;42(7):473-483. http://doi.org/10.1080/08827508.2020.1793140.
22 Sajjad M, Otsuki A. Correlation between flotation and rheology of fine particle suspensions. Metals. 2022;12(2):270. http://doi.org/10.3390/met12020270.
Submetido em:
11/09/2024
Aceito em:
27/09/2024