Análise do desgaste em ferramentas de metal duro revestidas com TiN durante o fresamento do aço ABNT 4140 a seco e com fluido sintético
Analysis of wear in carbide tools coated with TiN during the milling of ABNT 4140 steel dry and with synthetic fluid
Nilo Nogueira da Silva; Marcelo Ferreira; Wagner Sade
Resumo
A indústria metalmecânica exige cada vez mais o desenvolvimento dos processos de fabricação, especialmente a modernização das máquinas operatrizes e a evolução constante das ferramentas de corte. O presente trabalho avalia a influência dos parâmetros de corte no processo de fresamento do aço ABNT 4140, utilizando fluido sintético e corte a seco, no desgaste da ferramenta de corte revestida com TiN. Dessa forma, barras do aço ABNT 4140 foram fresadas utilizando uma velocidade de corte de 120 m/min e diferentes avanços. A avaliação do desgaste de flanco das ferramentas foi realizada nas três posições das pastilhas na fresa, sendo quantificada por microscopia óptica e observada em microscópio eletrônico de varredura, com o intuito de verificar os mecanismos de desgaste. Investigou-se a influência do desgaste de flanco das pastilhas superior a 0,3 mm, o que pode permitir maior utilização da pastilha no fresamento de acabamento superficial da peça. Assim, concluiu-se que a refrigeração interna feita por furo passante na fresa não se mostrou superior ao corte a seco e, também, que o desgaste foi sensível ao avanço.
Palavras-chave
Abstract
The metalworking industry is increasingly demanding the development of manufacturing processes, particularly the modernization of machine tools and the constant evolution of cutting tools. This study evaluates the influence of cutting parameters in the milling process of ABNT 4140 steel, using synthetic fluid and dry cutting, on the wear of the TiN-coated cutting tool. Bars of ABNT 4140 steel were milled using a cutting speed of 120 m/min and different feed rates. The evaluation of tool flank wear was conducted at three positions of the inserts in the milling cutter, quantified by optical microscopy and observed with a scanning electron microscope to verify the wear mechanisms. The influence of flank wears greater than 0.3 mm was investigated, as this may allow the insert to be used more effectively for milling the surface finish of the workpiece. It was concluded that internal cooling through a through-hole in the cutter was not superior to dry cutting, and that wear was sensitive to the feed rate.
Keywords
Referências
1 Ding P, Huang X, Li S, Zhao C, Zhang X. Real-time reliability analysis of micro-milling processes considering the effects of tool wear. Mechanical Systems and Signal Processing. 2023;200:110582. http://doi.org/10.1016/j.ymssp.2023.110582.
2 Zhang X, Gao Y, Guo Z, Zhang W, Yin J, Zhao W. Physical model-based tool wear and breakage monitoring in milling process. Mechanical Systems and Signal Processing. 2023;184:109641. http://doi.org/10.1016/j. ymssp.2022.109641.
3 Rizal M, Ghani JA, Nuawi MZ, Haron CHC. Cutting tool wear classification and detection using multi-sensor signals and Mahalanobis-Taguchi System. Wear. 2017;376:1759-1765. http://doi.org/10.1016/j.wear.2017.02.017.
4 Liu ZQ, Ai X, Zhang H, Wang ZT, Wan Y. Wear patterns and mechanisms of cutting tools in high-speed face milling. Journal of Materials Processing Technology. 2002;129(1-3):222-226. http://doi.org/10.1016/S0924-0136(02)00605-2.
5 Sonia P, Jain JK, Saxena KK. Influence of ultrasonic vibration assistance in manufacturing processes: a Review. Materials and Manufacturing Processes. 2021;36(13):1451-1475. http://doi.org/10.1080/10426914.2021.1914843.
6 Yang Z, Zhu L, Zhang G, Ni C, Lin B. Review of ultrasonic vibration-assisted machining in advanced materials. International Journal of Machine Tools & Manufacture. 2020;156:103594. http://doi.org/10.1016/j. ijmachtools.2020.103594.
7 Sousa VFC, Fernandes F, Silva FJG, Costa RDFS, Sebbe N, Sales-Contini RCM. Wear behavior phenomena of TiN/TiAlN HiPIMS PVD-Coated tools on Milling Inconel 718. Metals. 2017;13(4):684. http://doi.org/10.3390/ met13040684.
8 Skordaris G, Bouzakis K-D, Charalampous P, Bouzakis E, Paraskevopoulou R, Lemmer O, et al. Brittleness and fatigue effect of mono- and multi-layer PVD films on the cutting performance of coated cemented carbide inserts. CIRP Annals. 2014;63(1):93-96. http://doi.org/10.1016/j.cirp.2014.03.081.
9 Uhlmann E, Stawiszynski B, Leyens C, Heinze S, Sammler F. Sammler. Hard turning of hot work and cold work steels with HIPIMS and DCMS TiAlN coated carbide inserts. Procedia CIRP. 2016;46:591-594. http://doi. org/10.1016/j.procir.2016.03.231.
10 Siow PC, Ghani JA, Ghazali MJ, Jaafar TR, Selamat MA, Che Haron CH. Characterization of TiCN and TiCN/ ZrN coatings for cutting tool application. Ceramics International. 2013;39(2):1293-1298. http://doi.org/10.1016/j. ceramint.2012.07.061.
11 Ducros C, Benevent V, Sanchette F. Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools. Surface and Coatings Technology. 2003;163-164:681-688. http://doi. org/10.1016/S0257-8972(02)00656-4.
12 Aihua L, Jianxin D, Haibing C, Yangyang C, Jun Z. Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International Journal of Refractory Metals & Hard Materials. 2012;31:82-88. http://doi. org/10.1016/j.ijrmhm.2011.09.010.
13 Bouzakis KD, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M’Saoubi R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Annals. 2012;61(2):703-723. http://doi.org/10.1016/j.cirp.2012.05.006.
14 Skordaris G, Bouzakis KD, Charalampous P. A dynamic FEM simulation of the nano-impact test on mono- or multi-layered PVD coatings considering their graded strength properties determined by experimental-analytical procedures. Surface and Coatings Technology. 2015;265:53-61. http://doi.org/10.1016/j.surfcoat.2015.01.063.
15 Fu Q, Lundin D, Nicolescu CM. Anti-vibration engineering in internal turning using a carbon nanocomposite damping coating produced by PECVD process. Journal of Materials Engineering and Performance. 2014;23(2):506- 517. http://doi.org/10.1007/s11665-013-0781-y.
16 Singh O, Malik HK, Dahiya RP, Kulriya PK. Tuning of mechanical and structural properties of 20 MC 5 steel using N ion implantation and subsequent annealing. Journal of Alloys and Compounds. 2017;710:253-259. http://doi. org/10.1016/j.jallcom.2017.03.097.
17 Karagöz S, Fischmeister HF. Metallographic observations on the wear process of TiN-coated cutting tools. Surface and Coatings Technology. 1996;81(2):190-200. http://doi.org/10.1016/0257-8972(95)02487-5.
18 Del AG, Alonso U, Veiga F, Arizmendi M. Wear mechanisms of TiN coated tools during high-speed tapping of GGG50 nodular cast iron. Wear. 2023;514-515. http://doi.org/10.1016/j.wear.2022.204558.
19 Binali R, Demirpolat H, Kuntoğlu M, Sağlam H. Machinability investigations based on tool wear, surface roughness, cutting temperature, chip morphology and material removal rate during dry and MQL-Assisted milling of nimax mold steel. Lubricants. 2023;11(3):101. http://doi.org/10.3390/lubricants11030101.
20 Gajrani KK, Suvin PS, Kailas SV, Sankar MR. Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid. Journal of Cleaner Production. 2019;206:108- 123. http://doi.org/10.1016/j.jclepro.2018.09.178.
21 Lim SC, Lim CYH. Effective use of coated tools: the wear-map approach. Surface and Coatings Technology. 2001;39(2-3):127-134. http://doi.org/10.1016/S0257-8972(00)01163-4. 22 Zheng YK, Pramanik A, Basak AK, Dong Y, Prakash C, Shankar S, et al. Application of coolants during toolbased machining: a review. Ain Shams Engineering Journal. 2023;14(1):101830. http://doi.org/10.1016/j. asej.2022.101830.
23 Stachurski W, Sawicki J, Wójcik R, Nadolny K. Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition. Journal of Cleaner Production. 2018;171:892-910. http://doi.org/10.1016/j.jclepro.2017.10.059.
24 Gao Z, Zhang H, Ji M, Zuo C, Zhang J. Influence of Various Cooling and Lubrication Conditions on Tool Wear and Machining Quality in Milling Inconel 718. International Journal of Precision Engineering and Manufacturing-Green Technology. 2024;11:391-406. http://doi.org/10.1007/s40684-023-00558-9.
25 Rashid AL, He N, Jamil M, Muhammad IH, Munish KG, Krolczyk GM. A state-of-the-art review on recently developed sustainable and green cooling/lubrication technologies in machining Metal Matrix Composites (MMCs). International Journal of Precision Engineering and Manufacturing-Green Technology. 2023;10:1637-1660. http:// doi.org/10.1007/s40684-023-00521-8.
26 ISO: International Organization for Standardization. ISO 3585:1998: specification for tool life testing with single point turning tools. Geneva: ISO; 1998.
27 Bouzakis KD, Hadjiyiannis S, Skordaris G, Anastopoulos J, Mirisidis I, Michailidis N, et al. The Influence of the coating thickness on its strength properties and on the milling performance of PVD coated inserts. Surface and Coatings Technology. 2003;174–175:393-401. http://doi.org/10.1016/S0257-8972(03)00678-9.
28 Vieira JM, Machado AR, Ezugwu EO. Performance of cutting fluids during face milling of steels. Journal of Materials Processing Technology. 2001;116(2–3):244-251. http://doi.org/10.1016/S0924-0136(01)01010-X.
29 Raza MH, Hafeez F, Zhong RY, Imran A. Investigation of surface roughness in face milling processes. International Journal of Advanced Manufacturing Technology. 2020;111(9-10):2589-2599. http://doi.org/10.1007/s00170-020-06188-8.
30 Singh J, Gill SS, Dogra M, Singh R. A review on cutting fluids used in machining processes. Engineering Research Express. 2021;3(1):012002. http://doi.org/10.1088/2631-8695/abeca0
Submetido em:
15/10/2024
Aceito em:
21/05/2025