Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.2025.3201
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Geopolymer as an alternative stabilizer of waste and tailings from iron mining

Jéssica Tavares da Cunha; Igor Crego Ferreira; Leonardo Junior Fernandes Campos; Roberto Galery; Douglas Batista Mazzinghy

Downloads: 0
Views: 26

Abstract

Mining tailings are increasingly abundant and, if not properly processed or stored, can pose environmental and social risks. This work evaluates the use of metakaolin-based geopolymer as a binder in mixtures of iron mining waste and tailings, with a view to mechanically stabilizing this waste for safer disposal. The percentage of water in the tailings and binder in the mixtures, water/solid ratio of the binder, proportion of precursor and binder activator and mixing time were evaluated. The raw materials and geopolymeric products were characterized using XRF, XRD, FTIR and compressive strength - only for geopolymeric products. The mixture with the lowest percentage of water in the tailings – 15% - and the highest percentage of binder - 30% - obtained 7.72 MPa after 7 days of curing - the only value higher than the ideal – 7 MPa after 7 days of curing. This result demonstrates the importance of the greater amount of binder in the mix and the detrimental effect of water in the mix. Increasing the mixing time, combined allied to not using water in the mixture with the binder, improved the strength values to 9.13 and 14.77 MPa after 7 and 28 days of curing, respectively. This may be due to the fact that the geopolymerization reaction was more complete, generating larger, more complex and resistant structures

Keywords

 Geopolymer; Iron tailings; Waste; Stabilization; Tailings disposal

Referências

1 IBRAM. [cited 2025 Jan 13]. Mineração em números: 2022 - Infográfico: Dados do setor mineral. Brasilia: IBRAM; 2022. Available at: https://ibram.org.br/publicacoes/?txtSearch=&checkbox-section%5B%5D=1236

2 Capasso I, Lirer S, Flora A, Ferone C, Cioffi R, Caputo D, et al. Reuse of mining waste as aggregates in fly ash-based geopolymers. Journal of Cleaner Production. 2019;220:65-73. http://doi.org/10.1016/j.jclepro.2019.02.164.

3 Zhang L, Ahmari S, Zhang J. Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Construction & Building Materials. 2011;25(9):3773-3781. http://doi.org/10.1016/j.conbuildmat.2011.04.005.

4 Guedes GB, Schneider CL. Disposição de rejeitos de mineração: as opções tecnológicas para a redução dos riscos em barragens. In: XXVII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa; 2017 Oct. 22-26; Belém, PA, Brazil. Rio de Janeiro: CETEM; 2017.

5 Hanson Pastran S, Mallett A. Unearthing power: A decolonial analysis of the Samarco mine disaster and the Brazilian mining industry. The Extractive Industries and Society. 2020;7(2):704-715. http://doi.org/10.1016/j. exis.2020.03.007.

6 Silva Rotta LH, Alcântara E, Park E, Negri RG, Lin YN, Bernardo N, et al. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. International Journal of Applied Earth Observation and Geoinformation. 2020;90:102119. http://doi.org/10.1016/j.jag.2020.102119.

7 Fonseca HGA, Alexandrino JS, Ferreira TED. Metodologias de disposição de rejeitos de minério de ferro para substituir as barragens de rejeito. Profiscientia. 2019;12:54-72.

8 Rico M, Benito G, Salgueriro A, Diez-Herrero A, Pereira HG. Reported tailings dam failures: a review of the european incidents in the worldwide context. Journal of Hazardous Materials. 2008;152:846-852.

9 Armstrong M, Petter R, Petter C. Why have so many tailings dams failed in recent years? Resources Policy. 2019;63:101412. http://doi.org/10.1016/j.resourpol.2019.101412.

10 Bowker LN, Chambers DM. [cited 2025 Jan 13]. The risk public liability & economics of tailings facility failures. 2015. Available at: https://earthworks.org/assets/uploads/2018/12/44-Bowker-Chambers.-2015.-Risk-PublicLiability-Economics-of-Tailings-Storage-Facility-Failures.pdf

11 Kiventerä J, Perumal P, Yliniemi J, Illikainen M. Mine tailings as a raw material in alkali activation: A review. International Journal of Minerals Metallurgy and Materials. 2020;27(8):1009-1020. http://doi.org/10.1007/s12613- 020-2129-6.

12 Davidovits J. Geopolymers: ceramic-like inorganic polymers. Journal of Ceramic Science and Technology. 2017;8:335-350. http://doi.org/10.4416/JCST2017-00038.

13 Ferreira IC, Galéry R, Henriques AB, Teixeira APC, Prates CD, Lima AS, et al. Reuse of iron ore tailings for production of metakaolin-based geopolymers. Journal of Materials Research and Technology. 2022;18:4194-4200. http://doi.org/10.1016/j.jmrt.2022.03.192.

14 Figueiredo RAM, Brandão PRG, Soutsos M, Henriques AB, Fourie A, Mazzinghy DB. Producing sodium silicate powder from iron ore tailings for use as an activator in one-part geopolymer binders. Materials Letters. 2021;288:129333. http://doi.org/10.1016/j.matlet.2021.129333.

15 Perumal P, Piekkari K, Sreenivasan H, Kinnunen P, Illikainen M. One-part geopolymers from mining residues – Effect of thermal treatment on three different tailings. Minerals Engineering. 2019;144:106026. http://doi. org/10.1016/j.mineng.2019.106026.

16 Prates CD, Lima AS, Ferreira IC, Paula FGF, Pinto PS, Ardisson JD, et al. Use of iron ore tailing as raw material for two products: Sodium Silicate and Geopolymers. Journal of the Brazilian Chemical Society. 2023;34(6):809-818. http://doi.org/10.21577/0103-5053.20220149.

17 Scrivener KL, John VM, Gartner EM. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research. 2018;114:2-26. http://doi.org/10.1016/j. cemconres.2018.03.015.

18 Talaei A, Pier D, Iyer AV, Ahiduzzaman M, Kumar A. Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. Energy. 2019;170:1051-1066. https://doi. org/10.1016/j.energy.2018.12.088

19 Tong KT, Vinai R, Soutsos MN. Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. Journal of Cleaner Production. 2018;201:272-286. http://doi.org/10.1016/j. jclepro.2018.08.025.

20 Aiseh YIA, Atrushi DS, Akeed MH, Qaidi S, Tayeh BA. Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials. 2022;17:e01245. http://doi.org/10.1016/j.cscm.2022.e01245.

21 Wang J, Chen X, Li C, Zhou Z, Du P, Zhang X. Evaluating the effect of kaliophilite on the fire resistance of geopolymer concrete. Journal of Building Engineering. 2023;75:106975. http://doi.org/10.1016/j.jobe.2023.106975.

22 Ren B, Zhao Y, Bai H, Kang S, Zhang T, Song S. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere. 2021;267:128900. http://doi.org/10.1016/j.chemosphere.2020.128900.

23 Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: A review. Cement and Concrete Research. 2018;103:21-34. http://doi.org/10.1016/j.cemconres.2017.10.001.

24 Davidovits JDR. [cited 2025 Jan 13]. Ferro-sialate geopolymers. 2020. Available at: www.geopolymer.org

25 Nkwaju RY, Djobo JNY, Nouping JNF, Huisken PWM, Deutou JGN, Courard L. Iron-rich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties. Applied Clay Science. 2019;183:105333. http://doi.org/10.1016/j.clay.2019.105333.

26 Hu Y, Liang S, Yang J, Chen Y, Ye N, Ke Y, et al. Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Construction & Building Materials. 2019;200:398-407. http://doi.org/10.1016/j. conbuildmat.2018.12.122.

27 Kaze RC, Beleuk à Moungam LM, Fonkwe Djouka ML, Nana A, Kamseu E, Chinje Melo UF, et al. The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Applied Clay Science. 2017;138:48-62. http:// doi.org/10.1016/j.clay.2016.12.040.

28 Kamseu E, Alzari V, Nuvoli D, Sanna D, Lancellotti I, Mariani A, et al. Dependence of the geopolymerization process and end-products to the nature of solid precursors: challenge of the sustainability. Journal of Cleaner Production. 2021;278:123587. http://doi.org/10.1016/j.jclepro.2020.123587.

29 Catauro M, Tranquillo E, Barrino F, Dal Poggetto G, Blanco I, Cicala G, et al. Mechanical and thermal properties of fly ash-filled geopolymers. Journal of Thermal Analysis and Calorimetry. 2019;138(5):3267-3276. http://doi. org/10.1007/s10973-019-08612-y.

30 Kwasny J, Soutsos MN, McIntosh JA, Cleland DJ. Comparison of the effect of mix proportion parameters on behaviour of geopolymer and Portland cement mortars. Construction & Building Materials. 2018;187:635-651. http://doi.org/10.1016/j.conbuildmat.2018.07.165.


Submetido em:
13/01/2025

Aceito em:
16/04/2025

6835b4ada9539548847775c3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections