Metodologias de caracterização por EBSD utilizadas para cálculo de mecanismos de endurecimento e otimização de processamento termomecânico controlado – uma revisão
EBSD characterization methods to calculate hardening mechanisms and optimize thermomechanical control processing – a review
Geraldo Lúcio de Faria; Rodrigo Rangel Porcaro; Leonardo Barbosa Godefroid; Luiz Cláudio Cândido; Ricardo José de Faria
Resumo
A técnica de difração de elétrons retroespalhados (EBSD) tem se consolidado como uma ferramenta essencial para a caracterização microestrutural de aços de alta resistência mecânica processados por laminação termomecânica controlada. Este artigo de revisão discute metodologias baseadas na utilização desta técnica para a predição e quantificação de mecanismos de endurecimento, incluindo solução sólida (modelo matemático), refino de grão, densidade de discordâncias e precipitação. A literatura mostra que as análises por EBSD permitem estimar com boa precisão a influência da composição quÃmica e dos parâmetros de processamento sobre a evolução microestrutural e as propriedades mecânicas. Além disso, as equações reportadas na literatura possibilitam estimar a contribuição individual de cada mecanismo de endurecimento, fornecendo uma abordagem mais detalhada para otimização de processos industriais. A compreensão dessas interações é fundamental para o desenvolvimento de aços avançados, permitindo ajustar rotas de processamento e composições quÃmicas para atender a requisitos especÃficos de desempenho. Conclui-se que a técnica de EBSD tem desempenhado um papel importante no planejamento de processamento termomecânico controlado de aços, com foco sobre a evolução microestrutural e de propriedades mecânicas, se tornando ferramenta indispensável para o avanço da metalurgia dos aços de alta resistência mecânica.
Palavras-chave
Abstract
Electron backscatter diffraction (EBSD) has become an essential tool for the microstructural characterization of highstrength steels processed through thermomechanical controlled rolling. This review paper discusses EBSD-based methodologies for predicting and quantifying hardening mechanisms, including solid solution strengthening (mathematical modeling approach), grain refinement, dislocation density, and precipitation. The literature indicates that EBSD analyses provide reliable estimations of the effects of chemical composition and processing parameters on microstructural evolution and mechanical properties. Additionally, reported equations enable the individual quantification of each strengthening mechanism, offering a more detailed approach for optimizing industrial processes. Understanding these interactions is crucial for the development of advanced steels, allowing for the adjustment of processing routes and chemical compositions to meet specific performance requirements. It is concluded that EBSD plays a key role in the design of thermomechanical processing strategies, focusing on microstructural evolution and mechanical property optimization, making it an indispensable tool for advancing the metallurgy of high-strength steels.
Keywords
References
1 Faria GL, Porcaro RR, Godeforid LB, Cândido LC, Faria RJ. Desenvolvimento de chapas grossas de aço API 5L Grau X80 – processamento termomecânico controlado. Tecnologica em Metalurgia, Materiais e Mineração. 2024;21:e3038.
2 Abreu LGO, Faria GL, Faria RJ, Matsubara DB, Porcaro RR. Optimizing rolling strategies for API 5L X80 steel heavy plates produced by thermomecanical processing in a reversible single-stand mill. Metals. 2024;14:746.
3 Martins CA, Faria GL, Mayo U, Isasti N, Uranga P, RodrÃguez-Ibabe J, et al. Production of a non-stoiciometric Nb-Ti HSLA steel by thermomechanical processing on a steckel mil. Metals. 2023;13(2):405.
4 Mausavi Anijdan SH, Rezaienan A, Yue S. The effect of chemical composition and austenite conditioning on the transformation behavior of microalloyed steels. Materials Characterization. 2012;63:27-38.
5 Wu Q, He S, Hu P, Liu Y, Zhonghua Z, Fan C, et al. Effect of finish rolling temperature on microstructure and mechanical properties of X80 pipeline steel by on-line quenching. Materials Science and Engineering A. 2023;862(18):144496.
6 Larzabal G, Isasti N, Rodriguez-Ibabe JM, Uranga P. Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb-Mo and Ti-Mo microaaloyed steels. Metals. 2017;7:65.
7 Larzabal G, Isasti N, Rodriguez-Ibabe JM, Uranga P. Effect of microstructure on post-rolling induction treatment in a low C Ti-Mo microalloyed steel. Metals. 2018;8:694.
8 Isasti N, Jorge-Badiola D, Taheri ML, Uranga P. Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part I: Yield Strength. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2014;45A:4960-4971.
9 Isasti N, Jorge-Badiola D, Taheri ML, Uranga P. Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part II: Impact Toughness. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2014;45A:4972-4982.
10 Isasti N, Jorge-Badiola D, Taheri ML, Uranga P. Phase transformation study in Nb-Mo microalloyed steels using dilatometry and EBSD quantification. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2013;44:3552-3563.
11 Zurutuza I, Isasti N, Detemple E, Schwinn V, Mohrbacher H, Uranga P. Effect of Nb and Mo additions in the microstructure/tensile proerty relationship in high strength quenched and quenched and tempered boron steels. Metals. 2021;11(1):29.
12 Zurutuza I, Isasti N, Detemple E, Schwinn V, Mohrbacher H, Uranga P. Effect of quenching strategy and Nb-Mo additions on phase transformations and quenchability of high-strength boron steels. Journal of the Minerals Metals & Materials Society. 2021;73:3158-3168.
13 Liang XJ, Hua MJ, Garcia CI, DeArdo AJ. The thermomechanical controlled processing of high-strength steel plate: a new view of toughness based on modern metallography. Materials Science Forum. 2013;762:38-46.
14 Iza-Mendia A, Gutiérrez I. Generalization of the existing relations between microstructure and yield stress from ferrite-perlite to high strength steels. Materials Science and Engineering A. 2013;(561):40-51.
15 Yakubstov IA, Boyd JD, Liu WJ, Essadiqui E. Strengthening mechanism in dual-phase acicular ferrite+M/A microstructure. In: Proceedings of the 42nd Mechanical Working and Steel Processing Conference. Toronto, Canadá; 2000. p. 429-439.
16 Kubin LP, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scripta Materialia. 2003;48(2):119-125.
17 Bush ME, Kelly PM. Strengthening mechanisms in bainitic steels. Acta Metallurgica. 1971;19(12):1363-1371.
18 Gutiérrez I. Effect of microstructure on the impact toughness of Nb-microalloyed steel: Generalization of existing relations from ferrite-pearlite to high strength microstructures. Materials Science and Engineering A. 2013;571:57-67.
19 DÃaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2003;34A:2505-2516.
20 Siciliano F, Stalheim DG, Gray JM. Modern high strength steels for oil and gas transmission pipelines. In:Proceedings of the 2008 7th International Pipeline Conference. 2008 7th International Pipeline Conference, Volume 3; 2008 September 29–October 3; Calgary, Alberta, Canada; 2008. p. 187-195.
21 Li S, Jiang Z, Li Y, Stalheim D, Li Q, Zhang G. Development and Production of Heavy Gauge X70 Pipeline Plate for Deep Water Pipe Applications at Shougang Steel. In: Proceedings of the 2012 9th International Pipeline Conference. Volume 3: Materials and Joining; 2012 September 24–28; Calgary, Alberta, Canada; 2012. p. 293-299.
22 Li S, Zhu H, Zhou P. Microstructure and mechanical properties of heavy X80 pipeline steel. Hot Working Technology. 2001;40(24):85-88.
23 Bott IS, Souza LFG, Texeira JCG, Rios PR. High-strength steel development for pipelines: a Brazilian perspective. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2005;36:443-454.
24 Pickering FB, Gladman T. Metallurgical developments in carbon steels. London: Iron and Steel Institute; 1963. Special Report No. 81.
Submitted date:
02/28/2025
Accepted date:
04/11/2025