Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20253126
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Obtenção e caracterização de compósitos de polipropileno e muscovita ultrassônica

Obtaining and characterizing polypropylene and ultrasonicated muscovite composites

Fábio Rezende de Souza; Elaine Vidal Dias Gomes Libano; Silvia Cristina Alves França; Shirleny Fontes Santo

Downloads: 0
Views: 30

Resumo

Neste trabalho foram preparados compósitos utilizando polipropileno (PP) como matriz e muscovita ultrassonicada como carga. O tratamento de ultrassonicação da muscovita promove delaminação do mineral o que contribui para aumento da adesão polímero/mineral. O mineral muscovita, que é um subtipo de mica, foi tratado ultrassonicamente por 60 e 120 minutos. As amostras PP/Mica foram processadas em extrusora monorosca, seguido de moagem e conformação em filmes planos. A caracterização dos compósitos quanto a densidade exibiu aumento da propriedade com aumento do tempo de tratamento ultrassônico da mica, o que sugere melhoria da interação com o polímero. O MEV dos compósitos revelou uma distribuição mais homogênea e maior alinhamento do mineral para as amostras tratadas ultrassonicamente. Os compósitos foram caracterizados ainda quanto ao impacto IZOD, FTIR e DRX. A análise geral dos resultados evidencia que os compósitos obtidos com muscovita ultrassonicada apresentaram discreta melhoria de propriedades.

Palavras-chave

Muscovita; Polipropileno; Compósitos; Ultrassonificação

Abstract

In this work, composites were prepared using polypropylene (PP) as matrix and ultrasonicated muscovite as filler. The ultrasonication treatment of muscovite promotes delamination of the mineral, which contributes to increased polymer/ mineral adhesion. The muscovite mineral, which is a subtype of mica, was ultrasonically treated for 60 and 120 minutes. The PP/Mica samples were processed in a single-screw extruder, followed by grinding and forming into flat films. The density characterization of the composites showed an increase in the property with an increase in the ultrasonic treatment time of the mica, which suggests an improvement in the interaction with the polymer. The SEM of the composites revealed a better distribution and greater alignment of the mineral for the ultrasonically treated samples. The compounds were further characterized in terms of IZOD impact, FTIR and XRD. The general analysis of the results shows that the composites obtained with ultrasonicated muscovite presented a slight improvement in properties.

Keywords

Muscovite; Polypropylene; Composites; Ultrasound treatment

Referências

1 Rajak KD, Pagar DD, Kuma RR, Pruncu CI. Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology. 2019;8:6354-6374. http://doi.org/10.1016/j. jmrt.2019.09.068.

2 Gerardo CF, França SCA, Santos SF, Bastos DC. A study of recycled high-density polyethylene with mica addition: influence of mica particle size on wetting behavior, morphological, physical, and chemical properties. International Journal of Developmental Research. 2020;10:37223-37228. http://doi.org/10.37118/ijdr.19110.06.2020.

3 Bastos BC, Dias ACS, França SCA, Bastos DC, Santos SF. Composites based on post-industrial wood plastic waste and ultrasonic treated muscovite. Materials Research. 2023;26(suppl. 1):e20220568. http://doi.org/10.1590/1980- 5373-MR-2022-0568.

4 Isfahani RB, Barbaz-Isfahani R, Khalvandi A, Tran TMN, Kamarian S. Synergistic effects of egg shell powder and halloysite clay nanotubes on the thermal and mechanical properties of abacá/polypropylene composites. Industrial Crops and Products. 2023;205:117498. http://doi.org/10.1016/j.indcrop.2023.117498.

5 Liu Z, Xing S, Li Y, Sun J, Li H, Gu X, et al. Surface modification of zinc oxide and its application in polypropylene with excellent fire performance and ultra-violet resistance. Journal of Colloid and Interface Science. 2024;661:307- 316. http://doi.org/10.1016/j.jcis.2024.01.134.

6 Lixandrão KCL, Ferreira FF. Polypropylene and tire powder composite for use in automotive industry. Helion. 2019;5:e02405. http://doi.org/10.1016/j.heliyon.2019.e02405.

7 Almeida PO, Gerardo CF, Leão AG, França SCA, Santos SF, Bastos DC. Sustainable composites based on recycled high-density polyethylene/mica. Materials Research. 2021;21:e20200418. http://doi.org/10.1590/1980- 5373-MR-2020-0418.

8 Gabryelczyk A, Swiderska-Mocek A, Czarnecka-Komorowska D. Muscovite as an inert filler for highly conductive and durable gel polymer electrolyte in sodium-ion batteries. Journal of Power Sources. 2022;552:23225930. http:// doi.org/10.1016/j.jpowsour.2022.232259.

9 Takei T, Oda R, Miura A, Kumada N, Kinomura N, Ohki R, et al. Effect of dispersion of sepiolite in sepiolite-NBR composite on the tensile strength. Composites. Part B, Engineering. 2013;44:260-265. http://doi.org/10.1016/j. compositesb.2012.05.034.

10 Santos SF, França SCA, Ogasawara T. Method for grinding and delaminating muscovite. Mining Science and Technology. 2011;21:7-10. http://doi.org/10.1016/j.mstc.2010.05.001.

11 Novikova L, Ayrault P, Fontaine C, Chatel G, Jérôme F, Belchinskaya L. Effect of low frequency ultrasound on the surface properties of natural aluminosilicates. Ultrasonics Sonochemistry. 2016;31:598-609. http://doi.org/10.1016/j. ultsonch.2016.02.014.

12 Souza FR, Fernandes RN, Libano EVDG, França SCA, Santos SF. Efeito do tratamento ultrassônico em mica muscovita. Revista Contemporânea. 2024;4:1-15. http://doi.org/10.56083/RCV4N5-128.

13 Souza FR. Compósitos obtidos a partir de polipropileno e muscovita ultrassonicada [dissertação]. Rio de Janeiro: Universidade do Estado do Rio de Janeiro; 2024.

14 American Society For Testing Materials. ASTM D792: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement: West Conshohocken, PA: ASTM; 2020.

15 American Society For Testing Materials. ASTM D2240: Standard Test Methods for Rubber Property—Durometer Hardness. West Conshohocken, PA: ASTM; 2021.

16 American Society For Testing Materials. ASTM D1238- 13: Standard Test Methods for Melt Flow Rates of Thermoplastics by Extrusion plastometer. West Conshohocken, PA: ASTM; 2013.

17 American Society For Testing Materials. ASTM D256- 10: Standard Test Methods for determining the Izod pendulum impact resistance of plastics. West Conshohocken, PA: ASTM; 2018.

18 Barros GS, Silva GO, Faria AD, Gerardo CF, Santos MCC, Libano EVDG, et al. Influência do tipo de compatibilizante nas propriedades de blendas de matrizes poliméricas recicláveis. Revista Contemporânea. 2023;3:15237-15250. http://doi.org/10.56083/RCV3N9-094.

19 Baggio A, Cruz MPM, Gonçalves GMB, Sanchez LEA. Obtenção de compósitos de baixa densidade e sua caracterização a partir do processo de laminação manual Hand Lay-Up com matriz poliéster insaturada reforçada com fibra de vidro. Revista Matéria. 2022;27:e202148547. DOI: https://doi.org/10.1590/1517-7076-RMAT-2021-48547.

20 Monsores KGC, França SCA, Moraes LS, Santos SF. Materiais Compósitos a base de PP e muscovita. Revista Iberoamericana de Polímeros. 2017;18:301-309.

21 Du P, Chen GX, Song S, Wu J, Gu K, Dachuan Z, et al. Effect of thermal activation on the tribological behaviors of muscovite particles as lubricant additives in lithium grease. Industrial Lubrication and Tribology. 2018;70:538-543. http://doi.org/10.1108/ILT-11-2016-0288.

22 Lapčík L, Maňas D, Lapčíková B, Vašina M, Staněk M, Čépe K, et al. Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites. Composites. Part B, Engineering. 2018;141:92-99. http://doi.org/10.1016/j.compositesb.2017.12.035.

23 Machado ABF, Lima AM, Bastos DC, Pereira PSC, Libano EVDG. Avaliação estrutural e térmica de compósitos de polímero pós-consumo e argila nacional. Brazilian Journal of Development. 2021;7:13935-13953. http://doi. org/10.34117/bjdv7n2-151.

24 Brown NMD, Liu ZH. An investigation using atomic force microscopy and X-ray photoelectron spectroscopy of the modification of the surface of mica with an argon RF-plasma discharge. Applied Surface Science. 1995;90:155-164. http://doi.org/10.1016/0169-4332(95)00074-7.

25 Libano EVDG, Visconte LLY, Pacheco ÉBAV. Propriedades térmicas de compósitos de polipropileno e bentonita organofílica. Polímeros. 2012;22:430-435. http://doi.org/10.1590/S0104-14282012005000063.

26 Qiu F, Wang M, Hao Y, Guo S. The effect of talc orientation and transcrystallization on mechanical properties and termal stability of the polypropylene/talc composites. Composites. Part A, Applied Science and Manufacturing. 2014;58:7-15. http://doi.org/10.1016/j.compositesa.2013.11.011.


Submetido em:
08/07/2024

Aceito em:
12/02/2025

67e56960a9539517fb4367d4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections