Comportamento tribológico dos materiais SAE 1045 x DIN GG20 em contato côncavo-convexo presentes em máquinas ferramenta
Tribological behavior of SAE 1045 x DIN GG20 materials in concave-convex contact in machine tools
Níkolas Andrei Furlan Canabarro; Victor Velho de Castro; Felipe Ariel Furlan Canabarro; Evandro Benincá; Bruno Bueno; Fabiana Lopes da Silva; Célia de Fraga Malfatti
Resumo
A resposta ao desgaste dos materiais é amplamente influenciada pela natureza específica de seus microconstituintes e pela predominância de um conjunto de parâmetros interconectados ao sistema em que é empregado. Para caracterizar o comportamento tribológico do aço SAE 1045 e do Ferro Fundido DIN GG20, foram realizados testes de desgaste à seco em um tribômetro na configuração bucha-pino, único existente no Brasil, o qual foi desenvolvido para analisar superfícies em contato similares à contraponto (contato côncavo-convexo) de máquinas ferramenta. As características de desgaste foram então determinadas com base em múltiplos fatores, como dureza, microestrutura, rugosidade, aparência das superfícies desgastadas, perda de massa decorrente do processo de desgaste, e coeficiente de desgaste. As diferenças microestruturais e de dureza levaram a uma menor perda de massa no pino, fabricado em aço SAE 1045 em comparação à bucha, fabricada em ferro fundido DIN GG20. Após a realização dos ensaios foram encontrados indicativos da ocorrência dos mecanismos de adesão, fadiga superficial e em especial de abrasão, o que levou ao polimento das superfícies das amostras do pino e da bucha.
Palavras-chave
Abstract
The wear response of materials is largely influenced by the specific nature of their microconstituents and the predominance of interconnected parameters within the system in which they are employed. To characterize the tribological behavior of the material pair steel SAE 1045 and cast-iron DIN GG20, dry wear tests were conducted using a pin-on-bushing tribometer, the only one of its kind in Brazil, which was developed to analyze contact surfaces similar to the tailstock (concave-convex contact) found in machine tools. The wear characteristics were then determined based on multiple factors, such as hardness, microstructure, roughness, appearance of worn surfaces, mass loss due to the wear process, and the wear coefficient. Microstructural and hardness differences resulted in lower mass loss in the pin and higher mass loss in the bushing compared to other tested pairs. Greater wear was observed in DIN GG20 bushings than in SAE 1045 pins. After the tests, evidence of adhesion, surface fatigue, and especially abrasion mechanisms were found, which led to polishing the sample surfaces of both the pin and the bushing.
Keywords
Referências
1 Grzesik W, Kiszka P, Kowalczyk D, Rech J, Claudin C. Machining of nodular cast iron (PF-NCI) using CBN tools. Procedia CIRP. 2012;1:483-487.
2 Norton RL. Projeto de máquinas: uma abordagem inegrada. 2. ed. Porto Alegre: Bookman; 2004.
3 Stachowiak GW. Wear: materials mechanisms and practice. Chichester: John Wiley & Sons; 2005.
4 Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction. 2017;5(3):263-284.
5 Benincá B, Gasparin AL. Dispositivo gerador de desgaste, sistema e processo de geração de desgaste e medição de atrito. BR Patent 10 2019 006518 4 A2. 2019 Mar 29.
6 Benincá E, Tribômetro para avaliação de desgaste em sistema Bucha-Pino. Caxias dos Sul: IFRS; 2019.
7 Hibbeler RC. Engineering mechanics: combined statics & dynamics. 12th ed. Upper Saddle River: Prentice Hall; 2009.
8 Castro VV, Fontoura LAM, Benfica JD, Seferin M, Pacheco JL, Santos CA. Lubricated sliding wear of SAE 1045 and SAE 52100 steel against alumina in the presence of biodiesel, diesel and a 50:50 blend of those fuels. Wear. 2016;368-369:267-277.
9 American Society for Testing and Materials. Standard test methodfor evaluatingthemicrostructure of graphitein iron castings. West Conshohocken: ASTM; 2019.
10 Avcı A, Ilkaya N, Simsir M, Akdemir A. Mechanical and microstructural properties of low-carbon steel-platereinforced gray cast iron. Journal of Materials Processing Technology. 2009;209(3):1410-1416.
11 Weitao S, Bin W, Xiaoliang L, Yuqian W, Jian Z. Controlling the tribology performance of gray cast iron by tailoring the microstructure. Tribology International. 2022;167:107343.
12 Polat Ş, Atapek ŞH, Türedi E, Taşlıçukur Z, Altuğ GS. Investigation of dry sliding wear mechanism of GG20 and GG25 cast iron materials used for valves. In: Proceedings of the 3rd International Conference of Engineering Against Failure, ICEAF III; 2013; Kos-Greece. Bradford: Emerald; 2013.
13 Castro VV, Fontoura LAM, Benfica JD, Seferin M, Pacheco OL, Santos CA. Lubricated sliding wear of SAE 1045 and SAE 52100 steel against alumina in the presence of biodiesel, diesel and a 50:50 blend of those fuels. Wear. 2016;368-369:267-277.
14 Zambrano OA, Muñoz EC, Rodríguez SA, Coronado JJ. Running-in period for the abrasive wear of austenitic steels. Wear. 2020;15:203298.
15 Zambrano O, Munoz E, Rodríguez S, Coronado J. Running-in period for the abrasive wear of austenitic steels. Wear. 2020;452-453:203298.
16 Pantaleón E, Tanaka DK, Bernardes F. Análise das variações do coeficiente de atrito e as correlações com os mecanismos de desgaste. Holos. 2012;1:62-72.
17 Ghasemi R, Elmquist L. Cast iron and the self-lubricating behaviour of graphite under abrasive wear conditions. In: Proceedings of the 10th International Symposium on the Science and Processing of Cast Iron, SPCI 10; 2014; Mar del Plata, Argentina. Buenos Aires: Instituto de Investigaciones en Ciencia y Tecnología de Materiale; 2014.
18 Gong W, Chen Y, Li M, Kang R. Coupling fractal model for adhesive and three-body abrasive wear of AISI 1045 carbon steel spool valves. Wear. 2019;418-419:75-85.
19 Aguilera-Gomez E, Plascencia-Mora H, Saldaña-Robles A, Ledesma OE, Alcantar VA. Análisis teórico-numérico de esfuerzos generados para bruñido de bola sobre cilindros rotativos. In: XX Congreso Internacional Anual de la SOMIM; 2014; Santiago de Querétaro, Mexico. Mexico: Sociedad Mexicana de Ingeniería Mecánica; 2014.
20 Descartes S, Desrayaud C, Niccolini E, Berthier Y. Presence and role of the third body in a wheel–rail contact. Wear. 2005;258(7-8):1081-1090.
21 Gong W, Chen Y, Li M, Kang R. Adhesion-fatigue dual mode wear model for fractal surfaces in AISI 1045 cylinderplane contact pairs. Wear. 2019;430–431:327-339.
22 Prasad B. Sliding wear response of a grey cast iron: effect of some experimental parameters. Tribology International. 2011;44(5):660-667.
23 Riahi A, Alpas A. Wear map for grey cast iron. Wear. 2003;255(1-6):401-409.
Submetido em:
22/10/2024
Aceito em:
16/01/2025