Combustion of high mesh content waste tires and coal for blast furnace injection via thermogravimetric analysis
Gabriel Penna Kramer Lima; Hector Alejandro Picarte Fragoso; Juliana Gonçalves Pohlmann; Antônio Cezar Farias Vilela; Eduardo Osório
Abstract
In this study, the combustion characteristics of pulverized high mesh content waste tire and low-volatile coal were examined, along with the co-combustion behaviors of blends incorporating 5%, 10%, and 30% waste tire content. The primary objective was to assess their combustibility using a thermogravimetric analyzer, focusing on the potential for partially substituting pulverized coal (PCI) in blast furnaces. Additionally, the composition of the ashes from individual fuels and the higher heating value (HHV) of individual fuels and their blends were also determined. The ash composition analysis of waste tires revealed a predominance of iron and zinc, with low levels of alkalis and phosphorus. Generally, the co-combustion behaviors were consistent with the summation of the individual components. Notably, the tests showed that adding waste tires reduced the coal’s ignition temperature. In the initial combustion stages, waste tire addition increased the degree of conversion, while sustaining this conversion in later stages, thus providing a combustion support effect. Among the tested blends, the 10% waste tire addition exhibited the best performance, balancing improved combustion behavior with adherence to ash content limits.
Keywords
Referências
1 Instituto Aço Brasil. Anuário estatístico 2021. Rio de Janeiro: IABR; 2021 [cited 2022 Jan 22]. Available at: https:// acobrasil.org.br/site/wp-content/uploads/2021/07/Anuario_Completo_2021.pdf
2 Brasil. Conselho Nacional do Meio Ambiente – CONAMA. Resolução nº 416 de 30 de setembro de 2009. Diário Oficial da União. 2009 [cited 2021 Mar 30]. Available at: http://www2.mma.gov.br/port/conama/legiabre. cfm?codlegi=616
3 Associação Nacional da Indústria de Pneumáticos – ANIP. Relatório: vendas totais de pneumáticos (reposição + montadoras + exportação) 2020. São Paulo; 2021 [cited 2021 Mar 29]. Available at: https://www.anip.org.br/sitenovo/wp-content/uploads/2021/02/Vendas-totais.pdf
4 RECICLANIP. Volume de pneus destinados. 2021 [cited 2021 Mar 30]. Available at: https://www.reciclanip.org.br/ destinados/
5 Díez C, Martínez O, Calvo LF, Cara J, Morán A. Pyolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value the product recovered. Waste Management. 2004;24(5):463-469. http://doi. org/10.1016/j.wasman.2003.11.006.
6 Dourado DC, Rabelo GF, Schirmer WN, Stroparo EC, Barsi FV, Trugilho PF. Determinação do poder calorífico e análise elementar de pneus automotivos inservíveis. Espacios. 2018;39(4):20-35.
7 Li X, Ma B, Xu L, Hu Z, Wang X. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochimica Acta. 2006;441(1):79-83. http://doi.org/10.1016/j.tca.2005.11.044.
8 Zhang J, Ren S, Liu Z, Zhou Y, Meng F, Su B. Combustion-supporting effect of common carbonous solid waste on anthracites. Journal of the Minerals Metals & Materials Society. 2012;64(8):1011-1016. http://doi.org/10.1007/ s11837-012-0391-4.
9 Leung DYC, Wang CL. Kinetic study of scrap tyre pyrolysis and combustion. Journal of Analytical and Applied Pyrolysis. 1998;45(2):153-169. http://doi.org/10.1016/S0165-2370(98)00065-5.
10 Pan D, Jiang W, Guo R, Huang Y, Pan W. Thermogravimetric and kinetic analysis of co-combustion of waste tires and coal blends. ACS Omega. 2021;6(8):5479-5484. http://doi.org/10.1021/acsomega.0c05768.
11 Atal A, Levendis YA. Comparison of the combustion behaviour of pulverized waste tyres and coal. Fuel. 1995;74(11):1570-1581. http://doi.org/10.1016/0016-2361(95)00122-L.
12 Conesa JA, Font R, Fullana A, Caballero JA. Kinetic model for the combustion of tyre wastes. Fuel. 1998;77(13):1469-1475. http://doi.org/10.1016/S0016-2361(98)00068-4.
13 Yan B, Zhang J, Guo H, Liu F. Research on simultaneous injection of waste tires with pulverized coal for blast furnace. In: Matyáš J, Ohji T, Pickrell G, Wong-Ng W, Kanakala R, editors. Advances in materials science for environmental and energy technologies IV. Beijing: The American Ceramic Society; 2015. p. 135-144.
14 Lima GPK. Caracterização e avaliação do comportamento de combustibilidade de pneus inservíveis e suas misturas com carvão mineral em termobalança visando à injeção em altos-fornos [dissertação]. Porto Alegre: Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul; 2022.
15 Fragoso HP, Pohlmann JG, Machado JGMS, Vilela ACF, Osório E. Combustion behavior of granulated and pulverized coal in a pci rig: combustibility and pressure variation analysis. Journal of Materials Research and Technology. 2019;8(6):1-6. http://doi.org/10.1016/j.jmrt.2019.09.055.
16 American Society for Testing and Materials – ASTM. ASTM D7582-15: standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. West Conshohocken: ASTM; 2023. 17 American Society for Testing and Materials – ASTM. ASTM D5373-93: standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal and coke. West Conshohocken: ASTM; 2017.
18 American Society for Testing and Materials – ASTM. ASTM D4326-03: standard test method for major and minor elements in coal ash by X-ray fluorescence. West Conshohocken: ASTM; 2021.
19 American Society for Testing and Materials – ASTM. ASTM D5865/D5865M-19: standard test method for gross calorific value of coal and coke. West Conshohocken: ASTM; 2019.
20 Ollero P, Serrera A, Arjona R, Alcantarilla S. Diffusional effects in TGA gasification experiments for kinetic determination. Fuel. 2002;81(5):189-200.
21 Alonso MJG, Borrego AG, Alvarez D, Kalkreuth W, Menéndez R. Physicochemical transformation of coal particles during pyrolysis and combustion. Fuel. 2001;80(13):1857-1870. http://doi.org/10.1016/S0016-2361(01)00071-0.
22 Morgan PA, Robertson SD, Unsworth JF. Combustion studies by thennogravimetric analysis - 1. Coal oxidation. Fuel. 1986;65(11):1546-1551. http://doi.org/10.1016/0016-2361(86)90331-5.
23 Martínez J, Puy N, Murillo R, Garcia T, Navarro M, Mastral A. Waste tyre pyrolysis: a review. Renewable & Sustainable Energy Reviews. 2013;23(1):179-213. http://doi.org/10.1016/j.rser.2013.02.038.
24 Campos AMA, Novack K, Assis PS. Selection of materials for blast furnace injection using quality indicators. Metals and Materials. 2019;72(1):119-123.
25 Fragoso HP. Avaliação da combustibilidade de carvões em simulador de PCI: evolução da metodologia de operação [dissertação]. Porto Alegre: Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul; 2019.
26 Riley J. Routine coal and coke analysis-collection, interpretation, and use of analytical data. West Conshohocken: ASTM International; 2007.
27 Zhang G, Wang F, Dai J, Huang Z. Effect of functionalization of graphene nanoplatelets on the mechanical and thermal properties of silicone rubber composites. Materials. 2016;9(2):92. http://doi.org/10.3390/ma9020092.
28 Veres J, Lovás M, Jakabksý S, Sepelák V, Hredzák S. Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy. 2012;129-130:67-73.
29 Carpenter AM. Use of PCI in blast furnaces. London: IEA Coal Research; 2006.
30 Crelling JC. Coal combustion under conditions of blast furnace injection. In: Proceedings of the Ironmaking Conference; 1995; Nashville. Warrendale: ISS; 1995; p. 73-79.
31 Lima GPKL, Fragoso HAP, Pohlmann JG, Vilela ACF, Osório E. Comportamento de carvões na combustão visando PCI e sua relação com as características químicas, físicas e petrográficas. In: Anais do 50º Seminário de Redução de Minério de Ferro e Matérias-Primas e 8º Simpósio Brasileiro de Aglomeração de Minério de Ferro - ABM Week 6ª edição; 2021; São Paulo. São Paulo: ABM; 2021. p. 10.
32 Pohlmann JG, Osório E, Vilela ACF, Diez MA, Borrego AG. Pulverized combustion under conventional (O2 /N2 ) and OXY-FUel (O2 /CO2 ) conditions of biomasses treated at different temperatures. Fuel Processing Technology. 2017;155:174-182. http://doi.org/10.1016/j.fuproc.2016.05.025.
33 Carpenter AM, Skorupska NM. Coal combustion: analysis and testing. 1st ed. London: IEA Coal Research; 1993. (Série IEACR).
34 Ghetti P. DTG combustion behaviour of coal: correlations with proximate and ultimate analysis data. Fuel. 1986;65(5):636-639. http://doi.org/10.1016/0016-2361(86)90356-X.
35 Williams P, Besler S. Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel. 1995;74(9):1277- 1283. http://doi.org/10.1016/0016-2361(95)00083-H.
36 Kurose R, Ikeda M, Makino H. Combustion characteristics of high ash coal in a pulverized coal combustion. Fuel. 2001;80(10):1447-1455. http://doi.org/10.1016/S0016-2361(01)00020-5.
37 Hutny WP, Lee GK, Price JT. Fundamentals of coal combustion during injection into a blast furnace. Progress in Energy and Combustion Science. 1991;17(4):373-395. http://doi.org/10.1016/0360-1285(91)90008-B.
38 Vamvuka D, Schwanekamp G, Gudenau HW. Combustion of pulverized coal with additives under conditions simulating blast furnace injection. Fuel. 1996;75(9):1145-1150. http://doi.org/10.1016/0016-2361(96)00029-4.
Submetido em:
09/12/2024
Aceito em:
06/02/2025