Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20253211
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Influência do controle dos parâmetros de eletrodeposição na qualidade do revestimento de níquel sobre substrato de cobre eletrolítico

Influence of electrodeposition parameterc on the quality of nickel coating on electrolytic copper substrate

Verenice Andrade Costa, Nayara Aparecida Neres da Silva, Taíse Matte Manhabosco

Downloads: 0
Views: 80

Resumo

A eletrodeposição consolidou-se como uma das técnicas mais empregadas para a produção de revestimentos de níquel, sendo amplamente reconhecida por sua simplicidade operacional, baixo custo e elevada eficiência. Neste estudo, revestimentos de níquel foram eletrodepositados em cobre eletrolítico usando uma solução tipo Watts, derivada do banho de sulfato de níquel e adaptada às condições experimentais. A obtenção de depósitos com distribuição e morfologia homogêneas, além de espessura uniforme, depende de parâmetros de processamento cruciais, como a temperatura do banho, a densidade de corrente aplicada, o pH e as concentrações dos reagentes. Assim, esses parâmetros foram cuidadosamente controlados com base em faixas estabelecidas na literatura, levando em consideração requisitos industriais e utilizando um banho isotérmico com controle de pH e densidade de corrente. As amostras produzidas foram caracterizadas em relação ao comportamento mecânico e à morfologia dos revestimentos, permitindo uma avaliação abrangente de suas propriedades e adequação às aplicações pretendidas.

Palavras-chave

Eletrodeposição; Solução níquel Watts; Controle de processo; Caracterização de filmes

Abstract

Electrodeposition has become one of the most widely used techniques to produce nickel coatings, recognized for its simple operation, low cost, and high efficiency. In this study, nickel coatings were electrodeposited onto electrolytic copper using a Watts-type solution, derived from a nickel sulfate bath and adapted to the experimental conditions. The achievement of deposits with homogeneous distribution and morphology, as well as uniform thickness, depends on crucial processing parameters such as bath temperature, applied current density, pH, and reagent concentrations. These parameters were carefully controlled based on ranges established in the literature, considering industrial requirements, and utilizing an isothermal bath with control of pH and current density. The produced samples were characterized in terms of mechanical behavior and coating morphology, allowing a comprehensive assessment of their properties and suitability for the intended applications.

Keywords

Electrodeposition; Watts nickel solution; Process control; Film characterization

Referências

1 Aleti S, Belwal S, Medala MV. Optimizing organically nano-fabricated Ni metal complexes for enhanced antioxidant and anticancer activity using response surface methodology. Futur J Pharm Sci. 2024;10(1):45. http:// doi.org/10.1186/s43094-024-00618-0.

2 Pedraza F, Proy M, Boulesteix C, Krukovskyi P, Metel M. Slurry aluminizing of IN-800HT austenitic stainless steel and pure nickel: correlations between experimental results and modelling of diffusion. Mater Corros. 2016;67(10):1059-1067. http://doi.org/10.1002/maco.201508758.

3 Baudrand D, Durkin B. Automotive applications of electroless nickel. Metal Finishing. 1998;96(5):20-24. http://doi. org/10.1016/S0026-0576(98)80080-9.

4 Polshettiwar V, Baruwati B, Varma RS. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chemistry. 2009;11(1):127-131. http://doi.org/10.1039/B815058C.

5 Metin Ö, Mazumder V, Özkar S, Sun S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. Journal of the American Chemical Society. 2010;132(5):1468-1469. http://doi. org/10.1021/ja909243z.

6 Parkinson R. Nickel plating and electroforming: essential industries for today and the future [Internet] Toronto: Nickel Institute; 2001. 30 p. [acesso em 22 jan. 2025]. Disponível em: http://www.nickelinstitute.org/

7 Yu J, Deng H, Tao J, Chen L, Cao H, Sun L, et al. Synthesis of Cu2 MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method. Materials Letters. 2017;191:186-188. http://doi.org/10.1016/j.matlet.2016.12.067.

8 Yue B, Zhu G, Chang Z, Song J, Gao X, Wang Y, et al. Study on surface wettability of nickel coating prepared by electrodeposition combined with chemical etching. Surface and Coatings Technology. 2022;444:128695. http://doi. org/10.1016/j.surfcoat.2022.128695.

9 Di Bari GA. Electrodeposition of nickel. In: Schlesinger M, Paunovic M, editors. Modern electroplating. 5th ed. Hoboken: John Wiley & Sons; 2010. p. 79-114. http://doi.org/10.1002/9780470602638.ch3.

10 Birlik I, Ak Azem NF. Influence of bath composition on the structure and properties of nickel coatings produced by electrodeposition technique. DEU Muhendis Fak Fen Muhendis Derg. 2018;20(59):689-697. http://doi. org/10.21205/deufmd.2018205954.

11 Djouani R, Qian X. Mechanism of electrodeposition of nickel. International Journal of Current Research. 2018;10:64228-64239.

12 Rose I, Whittington C. Nickel plating handbook. Toronto: Nickel Institute; 2013.

13 Mandich NV, Baudrand DW. Troubleshooting electroplating installations: nickel sulfamate plating systems. Plating and Surface Finishing. 2002;89:68-76.

14 Yasin G, Anjum MJ, Malik MU, Khan MA, Khan WQ, Arif M, et al. Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets. Diamond and Related Materials. 2020;104:107763. http://doi.org/10.1016/j.diamond.2020.107763.

15 Li YW, Huang XX, Yao JH, Deng XS. Effect of saccharin addition on the electrodeposition of nickel from a Wattstype electrolyte. Advanced Materials Research. 2011;189-193:911-914. http://doi.org/10.4028/www.scientific.net/ AMR.189-193.911.

16 Rashidi AM, Amadeh A. The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings. Surface and Coatings Technology. 2009;204(3):353-358. http://doi.org/10.1016/j.surfcoat.2009.07.036.

17 Poroch-Seriţan M, Bulai P, Severin TL, Gutt G. Modelling and optimization study on hardness of Ni-Fe alloy thin films through electroplating process. Applied Mechanics and Materials. 2014;657:286-290. http://doi.org/10.4028/ www.scientific.net/AMM.657.286.

18 Kendrick RJ. High-speed nickel plating from sulphamate solutions. Trans IMF. 1964;42(1):235-245. http://doi.org/1 0.1080/00202967.1964.11869931.

19 Saleem M, Brook PA, Cuthbertson JW. Note on the structure of nickel deposited from sulphamate solutions. Electrochimica Acta. 1967;12(5):553-555. http://doi.org/10.1016/0013-4686(67)80023-9.

20 Lins VFC, Cecconello ES, Matencio T. Effect of the current density on morphology, porosity, and tribological properties of electrodeposited nickel on copper. Journal of Materials Engineering and Performance. 2008;17(5):741- 745. http://doi.org/10.1007/s11665-008-9205-9.

21 Sanz A. Tribological behavior of coatings for continuous casting of steel. Surface and Coatings Technology. 2001;146-147:55-64. http://doi.org/10.1016/S0257-8972(01)01475-X.

22 Fattah M, Morin S. Microstructure, corrosion, and hardness properties of Ni coatings electrodeposited from a deep eutectic solvent-based electrolyte. Journal of Materials Engineering and Performance. 2025;34(17):18560-18576. http://doi.org/10.1007/s11665-024-10565-9.

23 Padilha AF, Ambrósio F Fo. Técnicas de análise microestrutural. São Paulo: Hemus; 2004.

24 Dikici T, Culha O, Toparli M. Study of the mechanical and structural properties of Zn-Ni-Co ternary alloy electroplating. Journal of Coatings Technology and Research. 2010;7(6):787-792. http://doi.org/10.1007/s11998-010-9250-9.

25 Chen JS, Duh JG, Wu FB. Microhardness and corrosion behavior in CrN / electroless Ni / mild steel complex coating. Surface and Coatings Technology. 2002;150(2-3):239-245. http://doi.org/10.1016/S0257-8972(01)01527-4.

26 American Society for Testing and Materials. ASTM E384-22: standard test method for microindentation hardness of materials. West Conshohocken: ASTM; 2022.

27 International Organization for Standardization. ISO 4516: metallic and related coatings: Vickers and Knoop microhardness tests. Geneva: ISO; 2009.

28 Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition. 2nd ed. New Jersey: Wiley Interscience; 2006. 29 Boukhouiete A, Boumendjel S, Sobhi NE. Effect of current density on the microstructure and morphology of the electrodeposited nickel coatings. Turkish Journal of Chemistry. 2021;45(5):1599-1608. http://doi.org/10.3906/ kim-2102-46.

30 Poroch-Seritan M, Gutt G, Severin TL. Study on the influence of current density and temperature about electrodepositions of nickel by electrolytes of type Watts. Annals of the Suceava University – Food Engineering. 2009;8(2):16-23.

31 Raghavendra CR, Basavarajappa S, Sogalad I, Kumar S. A review on Ni based nanocomposite coatings. Materials Today: Proceedings. 2021;39:6-16. http://doi.org/10.1016/j.matpr.2020.04.810.

32 Crundwell F, Moats M, Robinson T, Ramachandran V, Davenport W. Extractive metallurgy of nickel and cobalt. Oxford: Elsevier; 2011.

33 Wang W, Lee PD, McLean M. A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection. Acta Materialia. 2003;51(10):2971-2987. http://doi.org/10.1016/S1359- 6454(03)00110-1.

34 Cecconello ES. Morfologia e porosidade de níquel eletrodepositado em cobre [dissertação]. Belo Horizonte: Universidade Federal de Minas Gerais; 2006.


Submetido em:
22/01/2025

Aceito em:
14/08/2025

68d4083ca9539518ec067234 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections