Avaliação do desempenho mecânico e análise microestrutural de revestimentos avançados de barreira térmica produzidos por aspersão térmica para aplicações aeroespaciais
Evaluation of mechanical behaviour and microstructural analysis of advanced thermal barrier coatings produced by thermal spraying for aerospace applications
Bianca Costa Rodrigues, Vera Lúcia de Óthero Brito, Leonardo Henrique Fazan, Cauã Willian de Souza Barbosa, Renata Jesuina Takahashi, Danieli Aparecida Pereira Reis
Resumo
Os revestimentos de barreira térmica (TBCs) são essenciais na indústria aeronáutica para proteger componentes de turbinas a gás contra altas temperaturas. Em sua composição, possuem uma camada cerâmica isolante (top coat), uma camada de óxido termicamente crescido (TGO) e uma camada metálica de ligação (bond coat), cuja aderência e resistência são influenciadas pelo processo de deposição. Neste sentido, este estudo comparou a microestrutura e propriedades mecânicas de TBCs cujos bond coats foram produzidos por aspersão térmica a plasma (APS) e por aspersão térmica a chama de alta velocidade (HVOF) sobre substrato de Ti-6Al-4V. Foram realizadas análises de microscopia óptica, indentação instrumentada para determinação de dureza e módulo de elasticidade, e medições de rugosidade superficial. Os resultados indicaram que o bond coat aplicado por HVOF apresentou melhor uniformidade e maior dureza (3,63 ± 0,74) GPa em comparação ao aplicado por APS (2,34 ± 0,85) GPa. Além disso, o top coat da amostra com bond coat por HVOF apresentou menor rugosidade, resultado da maior intensidade de corrente e melhor fusão das partÃculas. Portanto, a combinação de bond coat por HVOF e top coat por APS com maior corrente demonstrou alto potencial para aplicação em componentes aeronáuticos.
Palavras-chave
Abstract
Thermal Barrier Coatings (TBCs) are essential in the aeronautical industry to protect gas turbine components from high temperatures. In their composition, they have an insulating ceramic layer (top coat), an thermally grown oxide layer (TGO), and a metallic bond layer (bond coat), whose adhesion and strength are influenced by the deposition process. In this context, this study compared the microstructure and mechanical properties of TBCs with bond coats produced by Atmospheric Plasma Spray (APS) and High-Velocity Oxy-Fuel (HVOF) on a Ti-6Al-4V substrate. Analyses were conducted using optical microscopy, instrumented indentation to determine hardness and elastic modulus, and surface roughness measurements. The results indicated that the bond coat applied by HVOF exhibited better uniformity and higher hardness (3.63 ± 0.74) GPa compared to the one applied by APS (2.34 ± 0.85) GPa. Additionally, the top coat of the sample with the HVOF bond coat exhibited lower roughness due to higher applied current intensity and better particle fusion. Therefore, the combination of an HVOF bond coat and an APS top coat with higher current intensity demonstrated high potential for application in aeronautical components.
Keywords
References
1 Zhou Y, Luo F, Zhou Y, Nan H, Zhang Q, Wang C, et al. Plasma sprayed TBCs with controlled intra-splat spherical pores and enhanced blocking of radiative heat transfer. Journal of the European Ceramic Society. 2023;44(5):3099-3111.
2 Stöver D, Funke C. Directions of the development of thermal barrier coatings in energy applications. Journal of Materials Processing Technology. 1999;92:195-202.
3 Lima CRC, Trevisan RE. Aspersão térmica: fundamentos e aplicações. 2. ed. São Paulo: Artliber Editora; 2007.
4 Almeida DS. Estudo de revestimentos cerâmicos sobre substrato metálico, obtidos por deposição fÃsica de vapores por feixe elétrons para aplicação como barreira térmica [tese]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais – INPE; 2005.
5 Volú RM. Estudo do Efeito do Tratamento Térmico Realizado com Laser de CO2 em Aço 316 Previamente Revestido com NiCrAlY aplicado por HVOF. In: Pereira AIA, organizador. Estudos interdisciplinares: ciências exatas e da terra e engenharias 3. Ponta Grossa: Atena Editora; 2019. Cap. 10, p. 92-99.
6 Lau H, Leyens C, Schulz U, Friedrich C. Influence of bondcoat pre-treatment and surface topology on the lifetime of EB-PVD TBCs. Surface and Coatings Technology. 2003;165(3):217-223.
7 Takahashi RJ, Assis JMK, Piorino Neto F, Reis DAP. Thermal conductivity study of ZrO2-YO1. 5-NbO2. 5 TBC. Journal of Materials Research and Technology. 2022;19:4932-4938.
8 Limar CRC. Revestimentos para barreira térmica: evolução e perspectivas. Soldagem e Inspeção. 2014;19:353-363.
9 Park JH, Kim JS, Lee KH, Song YS, Kang MCK. Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ ZrO2–8 wt% Y2O3 thermal barrier coating. Journal of Materials Processing Technology. 2008;201(1-3):331-335. 10 Lima CRC, Guilemany JM. Adhesion improvements of Thermal Barrier Coatings with HVOF thermally sprayed bond coats. Surface and Coatings Technology. 2007;201(8):4694-4701.
11 Reddy M, Prasad CD, Patil P, Ramesh MR, Rao N. Hot corrosion behavior of plasma-sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel. Surfaces and Interfaces. 2021;22:100810.
12 Oliveira JP, Duarte JF. Revestimentos cerâmicos utilizados como barreira térmica. Cerâmica. 2013;59:186-191.
13 Bach W, Engl L, Bach C, Lugscheider E, Parco M, Duda T. Evaluation of modern HVOF systems concerning the application of hot corrosion protective coatings. In: Moreau C, Marple B, editors. Thermal Spray 2003: advancing the science and applying the technology. Materials Park, OH: ASM international; 2003. p. 519-527.
14 Wielage B, Wank A, Pokhmurska H, Grund T, Rupprecht C, Reisel G, et al. Development and trends in HVOF spraying technology. Surface and Coatings Technology. 2006;201(5):2032-2037.
15 Martins RF. Estudo sobre o ataque dos silicatos fundidos (CMAS) a revestimentos para barreira térmica (TBC) depositados por aspersão térmica [dissertação]. São Paulo: Universidade Presbiteriana Mackenzie; 2023.
16 Pawlowski L. The science and engineering of Thermal Spray Coatings. 2nd ed. England: John Wiley e Sons, Ltd Publishing; 2008.
17 Paredes RSC. Estudo de revestimentos de alumÃnio depositados por três processos de aspersão térmica para a proteção de aço contra a corrosão marinha [tese]. Florianópolis: Universidade Federal de Santa Catarina; 1998.
18 Zeng S, Liu Y, Fan X, Huang W, Gu L, Zou B, et al. Thermal shock resistance of APS 8YSZ thermal barrier coatings on titanium alloy. Journal of Thermal Spray Technology. 2012;21:335-343.
19 Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. Journal of the European Ceramic Society. 2008;28:14051419.
20 Sobolev VV, Guilemany JM, Nutting J. High velocity oxy-fuel spraying: theory, structure-property relationships and applications. London, UK: Maney Publishing; 2004. 397 p.
21 Hardwicke CU, Lau YC. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review. Journal of Thermal Spray Technology. 2013;22(5):564-576.
22 Zhang J, Desai V. Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy. Surface and Coatings Technology. 2005;190(1):98-109.
23 Guo S, Kagawa Y. Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceramics International. 2006;32(3):263-270.
24 Duan K, Steinbrech RW. Influence of sample deformation and porosity on mechanical properties by instrumented microindentation technique. Journal of the European Ceramic Society. 1998;18(2):87-93.
25 Freitas FE. Comportamento em fluência da liga Ti-6Al-4V com recobrimento como forma de barreira térmica (TBC) depositado por aspersão térmica seguido de refusão por laser [tese]. São José dos Campos: Universidade Federal de São Paulo - Unifesp; 2020.
26 Kucuk A, Berndt CC, Senturk U, Lima RS, Lima CRC. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: Four point bend test. Materials Science and Engineering A. 2000;284(1-2):29-40.
27 Lavasani H. Qazi, Valefi Z, Ehsani N, Masoule S, Tomaddon. Comparison of the effect of sintering on the microstructure, micro hardness and phase composition of conventional and nanostructured YSZ TBCs. Ceramics International. 2017;43(15):12497-12504.
28 Wallace JS, Ilavsky J. Elastic modulus measurements in plasma sprayed deposits. Journal of Thermal Spray Technology. 1998;7:521-526.
29 Beele W, Marijnissen G, Van Leishout A. The evolution of thermal barrier coatings—status and upcoming solutions for today’s key issues. Surface and Coatings Technology. 1999;120:61-67.
30 Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surface and Coatings Technology. 2002;151:383-391.
31 Ercan B, Bowman KJ, Trice RW, Wang H, Porter W. Effect of initial powder morphology on thermal and mechanical properties of stand-alone plasma-sprayed 7 wt.% Y2O3–ZrO2 coatings. Materials Science and Engineering A. 2006;435:212-220.
32 Shi M, Xue Z, Zhang Z, Ji X, Byon E, Zhang S. Effect of spraying powder characteristics on mechanical and thermal shock properties of plasma-sprayed YSZ thermal barrier coating. Surface and Coatings Technology. 2020;395:125913.
33 Haynes JA, Unocic KA, Lance MJ, Pint BA. Impact of superalloy composition, bond coat roughness and water vapor on TBC lifetime with HVOF NiCoCrAlYHfSi bond coatings. Surface and Coatings Technology. 2013;237:65-70.
34 Curry N, Tang Z, Markocsan N, Nylén P. Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings — Thermal and lifetime performance. Surface and Coatings Technology, Elsevier. 2015;268:15-23.
Submitted date:
04/02/2025
Accepted date:
09/16/2025
