Comparative evaluation of mechanical properties and finite element simulation of transparent boat materials: exploring PLA, PETG, and Tritan fabricated via FDM additive manufacturing
Gisele Duarte Caboclo Antolin, Mauricio Quelhas Antolin, Bruno Cunha, José Silva
Abstract
Additive manufacturing, commonly known as 3D printing, has been widely adopted across various industries; however, its application in the naval sector remains limited, particularly in the fabrication of transparent vessels. In this context, this study evaluates the feasibility of using PETG, PLA, and Tritan for constructing such vessels, with a focus on their mechanical and optical properties. Samples were fabricated via 3D printing and subjected to mechanical strength, impact resistance, and transparency tests, supplemented by scanning electron microscopy (SEM) and finite element simulations. The results indicate that PLA exhibits superior stiffness, while PETG demonstrates exceptional transparency and mechanical properties comparable to PLA and superior to Tritan. Variations in printing speed significantly affected dimensional accuracy and yield strength. Despite some limitations, PETG emerged as the most promising material, offering an optimal balance between robustness and optical clarity, making it suitable for prototyping in naval applications. However, further research is necessary to validate its applicability in full-scale vessel construction, particularly concerning structural integrity and long-term reliability. This study highlights new opportunities for integrating advanced materials into naval engineering, fostering innovation, sustainability, and operational efficiency.
Keywords
References
1 Cucinotta F, Barberi E, Salmeri F. A review on navigating sustainable naval design: LCA and innovations in energy and fuel choices. Journal of Marine Science and Engineering. 2024;12(3):520. http://doi.org/10.3390/jmse12030520.
2 Parsons M, Meekan M. Acoustic characteristics of small research vessels. Journal of Marine Science and Engineering. 2020;8(12):970. http://doi.org/10.3390/jmse8120970.
3 Baley C, Davies P, Troalen W, Chamley A, Dinham-Price I, Marchandise A, et al. Sustainable polymer composite marine structures: developments and challenges. Progress in Materials Science. 2024;145:101307. http://doi. org/10.1016/j.pmatsci.2024.101307.
4 Dhandapani A, Krishnasamy S, Thiagamani SMK, Periasamy D, Muthukumar C, Sundaresan TK, et al. Evolution, prospects, and predicaments of polymers in marine applications: a potential successor to traditional materials. Recycling. 2024;9(1):8. http://doi.org/10.3390/recycling9010008.
5 Garwacki M, Cudnik I, Dziadowiec D, Szymczak P, Andrzejewski J. The development of sustainable Polyethylene Terephthalate Glycol-Based (PETG) blends for additive manufacturing processing—the use of multilayered foil waste as the blend component. Materials. 2024;17(5):1083. http://doi.org/10.3390/ma17051083.
6 Santana L, Alves JL, Sabino Netto AC, Merlini C. Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, química e mecânica. Matéria. 2018;23(4):e12267. http://doi.org/10.1590/s1517- 707620180004.0601.
7 Pereira C. Avaliação de propriedades ópticas de placas em poliéster (PETG) fabricadas em impressora 3D de código aberto [dissertation]. Florianópolis: Universidade Federal de Santa Catarina; 2018.
8 Murariu AC, Sîrbu NA, Cocard M, Duma I. Influence of 3D printing parameters on mechanical properties of the PLa parts made by FDM additive manufacturing process. Eng Innov. 2022;2:7-20. http://doi.org/10.4028/p-4isiu8.
9 Hsueh MH, Lai CJ, Wang SH, Zeng YS, Hsieh CH, Pan CY, et al. Effect of printing parameters on the thermal and mechanical properties of 3D-Printed PLA and PETG, using fused deposition modeling. Polymers. 2021;13(11):1758. http://doi.org/10.3390/polym13111758.
10 Elastomers and Plastics. 2025;57(4):580-598. http://doi.org/10.1177/00952443251327079.
11 Nosov P, Nahrybelnyi YA, Zinchenko SM, Onyshko DM, Polishchuk V. Development and 3D printing of vessel models with automated traffic control systems. Engineering in the Transportation Industry. 2023;26:70-81. http://doi.org/10.33815/2313-4763.2023.1-2.26-27.070-081.
12 Rismalia M, Hidajat SC, Permana IGR, Hadisujoto B, Muslimin M, Triawan F. Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series. 2019;1402(4):044041. http://doi.org/10.1088/1742-6596/1402/4/044041.
13 structural strength. El-Cezerî J Sci Eng. 2018;5(3):785-796. http://doi.org/10.31202/ecjse.423915.
14 Cadete MS, Gomes TEP, Gonçalves I, Neto V. Influence of 3D-printing deposition parameters on crystallinity and morphing properties of PLA-based materials. Prog Addit Manuf. 2025;10(1):127-137. http://doi.org/10.1007/ s40964-024-00608-x.
15 Rheney WE. US Patent 5.000.106. 1991 Mar 19.
16 Gusberti LW. Um estudo experimental do comportamento mecânico do PLA frente aos parâmetros do processo de impressão 3D [monograph]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2019.
17 Othman MS, Misran MFR, Khamisan ZH. Study on mechanical properties of PLA printed using 3D printer. Journal of Advanced Research in Applied Mechanics. 2019;59(1):10-18.
18 Cardoso PHM, Coutinho RRTP, Drummond FR, Conceição MND, Thiré RMDSM. Evaluation of printing parameters on porosity and mechanical properties of 3D printed PLA/PBAT blend parts. Macromolecular Symposia. 2020;394(1):2000157. http://doi.org/10.1002/masy.202000157.
19 Cavalcanti DKK, Banea MD, de Queiroz HFM. Effect of material on the mechanical properties of additive manufactured thermoplastic parts. Annals of “Dunarea de Jos” University of Galati. 2020;XII:5-12. http://doi.org/10.35219/awet.2020.01.
20 used in 3D printing – PLA, ABS and PET-G. Combustion Engines. 2024;199(4):97-103. http://doi.org/10.19206/ CE-189386.
21 Cavalcante AA. Correlação entre parâmetros de impressão 3D e a resistência mecânica anisotrópica de peças impressas em PLA. Salvador: Escola Politécnica; Universidade Federal da Bahia; 2022.
22 Antolin MQ, Antolin GDC, Brasil PC, Zaib MM, Costa GC, Silva JVA. Avaliação do PETG para utilização em embarcações transparentes. CIPPUS - Revista de Iniciação Científica. 2023;11(1):1-13. http://doi.org/10.18316/ cippus.v11i1.10728.
23 Pereira CP. Avaliação de propriedades ópticas de placas em poliéster (PETG) fabricadas em impressoras 3D de código aberto [dissertation]. Florianópolis: Universidade Federal de Santa Catarina; 2018.
Submitted date:
04/24/2025
Accepted date:
11/06/2025
