Challenges and opportunities in modeling liquid steel processing using computational thermodynamics – the case of secondary metallurgy
André Luiz Vasconcellos da Costa e Silva
Abstract
The developments in computational thermodynamics (CT) in the last decades have made possible not only the understanding of many aspects of steel behavior during processing and application but also opened the avenue for “Integrated Computational Materials Engineering” which is fast becoming reality. When it comes to the processes that lead to the initial shape and composition of the products, significant advances have also been made on the design of solidification processing, from foundry to continuous and ingot casting as well as additive manufacturing. On the other hand, progress in developing a better understanding of liquid steel processing and of extrapolating this knowledge to design better and more efficient processes has evolved at a relatively slower pace. While most of the thermodynamics needed to understand and control liquid steelmaking operations are well established and consolidated in databases, there is considerable uncertainty on the conditions for mass transfer and their relations to the operational parameters (such as injected gas flow in ladle metallurgy, blow conditions in converter or tapping conditions both in converter and electric furnace) during steelmaking processes and this requires additional investigation and improved sampling. This has led to three main approaches to process control and development: (a) handling of “big data” to derive predictive models (within the bounds of available data) which is extremely useful for process control (b) physico-chemistry based models supported by CT that may be useful for process development and (c) physico-chemistry based models with the use of “big data” for adjustment of some parameters and partially or totally supported by CT which may or may not be useful in process development. In the present paper, we present some recent efforts and results in this area, and highlight the difficulties, limitations and advantages of using models based essentially on physical chemistry fundamentals. We also discuss the possibility of using different approaches, by presenting and comparing selected examples using the three main approaches mentioned above. We try to further the discussion about which would be the more promising approaches both for control and for development of liquid steel processing operations.
Keywords
Referências
1 Bessemer H. Improvement in machinery for the manufacture of iron and steel. United States Patent 49055. 1865 Jul 25 [cited 2025 May 25]. Available at: https://patentimages.storage.googleapis.com/14/6f/65/fadc30167c498b/ US49055.pdf
2 Gibbs JW. On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Arts and Sciences. 1876;3:108-248.
3 von Helmholtz H. Die thermodynamik chemischer Vorgänge. Berlin: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin; 1882 [cited 2025 May 25]. (3 pt. in 1 vol.). Available at: https://catalog. hathitrust.org/Record/012261709
4 Prentzas GS. The Brooklyn bridge. New York: Chelsea House Publishers; 2009. 120 p. (Building America: then and now).
5 Roberts-Austen WC. Fourth report to the alloys research committee. Proceedings - Institution of Mechanical Engineers. 1897;52(1):31-100.
6 Howe HM. The metallography of steel and cast iron. New York: McGraw-Hill Book Co. Inc.; 1916.
7 Costa e Silva A. Physical chemistry in steelmaking: the giants in this history. Tecnologia em Metalurgia, Materiais e Mineração 2025. In press.
8 Merica PD. Charle Holmes Herty, Jr. A biographical note. Washington DC: National Academy of Sciences; 1958.
9 Herty CH Jr. Fundamental and applied research on the physical chemistry of steel making. Denver: United States Bureau of Mines; 1930. (vol. 3054).
10 Herty CH Jr. The physical chemistry of steel making. Pittsburgh: Mining and Metallurgical Advisory Boards; 1934 [cited 2025 May 25]. Available at: https://catalog.hathitrust.org/Record/005735065
11 Chipman J. The physical chemistry of liquid steel. In: Washburn TS, Larsen BM, Marsh JS; Alloys of Iron Research, editors. Basic open hearth steelmaking. New York: American Institute of Mining; 1944.
12 Hino MK, Ito K, editors. Thermodynamic data for Steelmaking. Sendai: Tohoku University Press; 2010.
13 The Japan Society for the Promotion of Science. Steelmaking data sourcebook. New York: Gordon and Breach; 1988.
14 Stahlinstitut VDEh. Slag Atlas. Dusseldorf: Verlag Stahleisen; 1995.
15 Costa e Silva A. Refino dos Aços: fundamentos e aplicações. São Paulo. Editora Blucher; 2023.
16 Chipman J. Researches in steel. The Japan Institute of Metals and Materials. 1973;14(4):233-241.
17 Darken LS. Role of chemistry in metallurgical research. Transactions of the Metallurgical Society of AIME. 1961;221:653-671.
18 Onoe T, Ito S, Ogawa K, Mimura T, Matsumoto H, Maeda S. Shape control of inclusions for steel tire cord (development in ladle arc refining). Trans ISIJ. 1987;27:B249.
19 Shiwaku K, Yamada Y, Koarai J, Kawaguchi Y. Improvement of fatigue life of valve spring wire by reducing non-metallic inclusions. Warrendale: SAE International; 1985. (SAE Technical Paper; 850364).
20 Gattelier C, Gaye H, Lehmann J, Bellot J, Moncel M. Inclusion control in low-aluminum steel. Rev Metall - CIT. 1992:362-369.
21 Lu DZD. Kinetics, mechanisms and modelling of calcium treatment of steel [thesis]. Hamilton: McMaster University; 1992.
22 Pellicani F, Villette F, Dubois J. The production of clean, isotropic steel by means of calcium treatment with the Affival cored-wired. In: 4th International Conference on Injection Metallurgy - ScanInject 4; 1986 Jun 11-13; Lulea, Sweden. Lulea: MEFOS; 1986.
23 Bannenberg N. Inclusion modification to prevent nozzle clogging. In: 78th Steelmaking Conference Proceedings; 1995 Apr 2-5; Nashville. Warrendale, PA: ISS-AIME; 1995. p. 457-463.
24 Stouvenot F, Gaye H, Gatellier C, Lehmann J. Secondary Steelmaking Slag Treatment for Inclusions Control in Semi-Killed Steels. In: Electric Furnace Conference Proceedings; 1994 Nov 13-16; Nashville. Warrendale, PA: ISS-AIME; 1994. p. 423-428.
25 Beswick J, Gabelli A, Ioannides E, Tripp JH, Voskamp AP. Rolling bearing life models and steel internal cleanliness. In: Mahaney JK Jr, editor. Advances in the production and use of steel with improved internal cleanliness, ASTM STP 1361. West Conshohocken, PA: American Society for Testing and Materials; 1999.
26 Kaufman L. Coupled phase diagrams and thermochemical data for transition metal binary systems-VI. Calphad. 1979;3(1):45-76.
27 Kaufman L. The lattice stability of metals—I. Titanium and zirconium. Acta Metallurgica. 1959;7(8):575-587.
28 Saunders N, Miodownik P. CALPHAD: a comprehensive guide. London: Pergamon Press; 1998.
29 Sano N. Thermodynamics of slags. In: Sano N, Lu WK, Riboud PV, editors. Advanced physical chemistry for process metallurgy. San Diego: Academic Press; 1997.
30 Hallstedt B, Hillert M, Selleby M, Sundman B. Modelling of acid and basic slags. Calphad. 1994;18(1):31-37.
31 Hillert M, Kjellqvist L, Mao H, Selleby M, Sundman B. Parameters in the compound energy formalism for ionic systems. Calphad. 2009;33(1):227-232.
32 Pelton AD. Solution models. In: Sano N, Lu WK, Riboud PV, Maeda M, editors. Advanced physical chemistry for process metallurgy. San Diego, CA: Academic Press; 1997. p. 87-116.
33 Hillert M, Burton B, Saxena SK, Degterov S, Kumar KCH, Ohtani H, Aldinger F, Kussmaul A. Group 4: Modelling of Oxides - 1996 Ringberg Workshop. Calphad. 1997;21(2):247-263.
34 Kattner U, Erickson G, Spencer P, Schalin M, Schmid-Fetzer R, Sundman B, Jansson B, Lee B, Chart T, Costa e Silva A. Group 4 & 5: Process Modeling and applications - 1997 Ringberg Workshop. Calphad. 2000;24(1):55-94.
35 Lukas HL, Weiss J, Henig ET. Strategies for the calculation of phase diagrams. Calphad. 1982;6(3):229-251.
36 Ansara I, Burton B, Chen Q, Hillert M, Fernandez-Guillermet A, Fries SG, et al. Models for composition dependence. Calphad. 2000;24(1):19-40.
37 Lukas HL, Fries SG, Sundman B. Computational Thermodynamics. Cambridge: Cambridge University Press; 2007.
38 Gaye H, Welfringer J. Modelling of the thermodynamic properties of complex metallurgical slags. In: Fine HA, Gaskell DR, editors. Second International Symposium on Metallurgical Slags and Fluxes. Lake Tahoe, Nevada: TMS-AIME; 1984. p. 357-375.
39 Faral M, Gaye H. Metal slag equilibria. In: Fine HA, Gaskell DR, editors. Second International Symposium on Metallurgical Slags and Fluxes. Lake Tahoe, Nevada: TMS-AIME; 1984. p. 159-179.
40 Lehmann J, Gaye H, Yamada W, Matsumiya T. A statistical thermodynamics model of sulphur and fluorine bearing iron and steelmaking slags. In: 6th International Iron and Steel Congress; 1990 Oct 21-26; Nagoya, Japan. Nagoya: ISIJ; 1990. p. 256-263.
41 Pelton AD, Blander M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approachapplication to silicate slag. Metallurgical Transactions. B, Process Metallurgy. 1986;17B:805-815.
42 Pelton AD, Blander M. Computer assisted analysis of the thermodynamic and phase diagrams of slags. In: Fine HA, Gaskell DR, editors. Second International Symposium on Metallurgical Slags and Fluxes. Lake Tahoe, Nevada: TMS-AIME; 1984. p. 281-294.
43 Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, et al. FactSage thermochemical software and databases, 2010–2016. Calphad. 2016;54:35-53.
44 Kapoor ML, Frohberg MG. Theoretical treatment of activities in silicate melts. In: Kubaschewski O, editor. Chemical Metallurgy of Iron and Steel, Proceedings of a Conference; 1971 Jul 19-21; Sheffield. London: ISI London; 1971. p. 17-22.
45 Lehmann J. Applications of arcelormittal thermodynamic computation tools to steel production. In: Reddy RG, Chaubal P, Pistorius PC, Pal U, editors. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Cham: Springer International Publishing; 2016 [cited 2025 May 25]. p. 697-706. Available at: http://link.springer.com/10.1007/978-3-319-48769-4_74
46 Gaye H, Lehmann J, Rocabois P, Ruby-Meyer F. Slag modelling and industrial applications. High Temp Mater Process. 2001;20(3-4):285-292.
47 Hillert M, Jansson B, Sundman B, Agren J. A two-sublattice model for molten solutions with different tendency for ionization. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1985;16A:261-266.
48 Sundman B. Modification of the two-sublattice model for liquids. Calphad. 1991;15(2):109-119.
49 Sundman B, Jansson B, Andersson JO. The Thermo-Calc databank system. Calphad. 1985;9:153-190.
50 Costa e Silva A. An overview of the use of CALPHAD methods in steelmaking. Journal of Mining and Metallurgy. 1999;35B(1):85-112.
51 Jung IH. Overview of the applications of thermodynamic databases to steelmaking processes. Calphad. 2010;34(3):332-362.
52 Costa e Silva A. Controle de Inclusões não-metálicas em aços: passado, presente e futuro. São Paulo: ABM; 2005. (Keynote Lecture In: 60 Congresso Anual da ABM, Belo Horizonte, MG).
53 Darken LS. Kinetics of metallurgical processes. In: Philbrook WO, Bever MB, editors. Basic open hearth steelmaking. 2nd ed. Pittsburgh: AIME Pittsburgh; 1951.
54 Darken LS. Kinetics of metallurgical Processes In: Sims C, editors. Electric furnace steelmaking. Pittsburgh: AIME Pittsburgh; 1962.
55 Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. Weinheim: Wiley; 2005. 895 p.
56 Richardson FD. Physical chemistry of melts in metallurgy. London: Academic Press; 1974.
57 Szekely J. Fluid flow phenomena in metals processing. New York: Academic Press; 1979. 437 p.
58 Poirier DR, Geiger GH. Transport phenomena in materials processing. Cham: Springer International Publishing; 2016 [cited 2025 May 25]. Available at: http://link.springer.com/10.1007/978-3-319-48090-9
59 Themelis NJ. Transport and chemical rate phenomena. Basel: Gordon and Breach; 1995. 369 p.
60 Seetharaman S, editor. Treatise on process metallurgy: Volume 4, Industrial plant design and process modeling. 2nd edition. Amsterdam: Elsevier; 2024.
61 Whitman WG. The two film theory of gas absorption. International Journal of Heat and Mass Transfer. 1962;5(5):429-433.
62 Lewis WK, Whitman WG. Principles of gas absorption. Industrial & Engineering Chemistry. 1924;16(12):1215-1220.
63 Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans AIChE. 1935;31:365-389.
64 Danckwerts PV. Significance of Liquid-Film Coefficients in Gas Absorption. Industrial & Engineering Chemistry. 1951;43(6):1460-1467.
65 Yoshida F, Akita K. Performance of gas bubble columns: volumetric liquid-phase mass transfer coefficient and gas holdup. AIChE Journal, American Institute of Chemical Engineers. 1965;11(1):9-13.
66 Fruehan RJ. Mass transfer between liquid metals and injected gases. Metals Technology. 1980;7(1):95-101.
67 Asai S, Muchi I, Kawachi M. Fluid flow and mass transfer in gas stirred ladles. In: Katz S, Landefeld CF, editors. Foundry processes. Boston, MA: Springer US; 1988 [cited 2025 May 25]. p. 261-292. Available at: http://link.springer. com/10.1007/978-1-4613-1013-6_9
68 Mazumdar D, Guthrie RI. The physical and mathematical modelling of gas stirred ladle systems. ISIJ International. 1995;35(1):1-20.
69 Fruehan RJ. Kinetics of gas–liquid and liquid–liquid reactions. In: Treatise on process metallurgy. Amsterdam: Elsevier; 2014 [cited 2025 May 25]. p. 143-177. Available at: https://linkinghub.elsevier.com/retrieve/pii/ B978008096984800001X
70 Conejo AN. Physical and mathematical modelling of mass transfer in ladles due to bottom gas stirring: a review. Processes. 2020;8(7):750.
71 Nakanishi K, Fujii T, Szekely J. Possible relationship between energy dissipation and agitation in steel processing operation. Ironmaking & Steelmaking. 1975;2(3):193-197.
72 Kim SH, Fruehan RJ. Physical modeling of liquid/liquid mass transfer in gas stirred ladles. Metallurgical Transactions. B, Process Metallurgy. 1987;18(2):381-390.
73 Lupis CHP. Chemical thermodynamics of materials. New York: North-Holland; 1983.
74 Ban-ya S. Mathematical expression of slag-metal reactions in steelmaking process by quadratic formalism based on regular solution model. In: 4th International Conference on Molten Slags and Fluxes; 1992 Jun 8-11; Sendai, Japan. Sendai: ISIJ; 1992. p. 8-13.
75 Oertel L, Costa e Silva A. Application of thermodynamic modeling to slag-metal equilibria in steelmaking. Calphad. 2000;23(3-4):379-391.
76 Ohta H, Suito H. Activities of SiO2 and Al2O3 and activity coefficients of FetO and MnO in CaO-SiO2- Al2O3-MgO slags. Metallurgical and Materials Transactions B. 1998;29(1):119-129.
77 Ohta H, Suito H. Activities in CaO-MgO-Al2O3 slags and Al, Mg and Ca Deoxidation Equilibria of Al, Mg and Ca. ISIJ International. 1996;36(8):983-990.
78 Ohta H, Suito H. Activities in Mno-SiO2-Al2O3 slags and deoxidation equilibria of Mn and Si. Metallurgical and Materials Transactions B. 1996;27B:263-270.
79 Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultra-clean steels. ISIJ International. 1996;36(5):528-536.
80 Costa e Silva A. Descrição termodinâmica de fases e sistemas: objetivos e limitações do método CALPHAD através de exemplos. In: Associação Brasileira de Metalurgia e Materiais. 61 Congresso Anual da ABM; Jul 2006; Rio de Janeiro, Brazil. São Paulo: ABM; 2006. p. 1206-1216.
81 Schmitz GJ, Prahl U, editors. Handbook of software solutions for ICME. Weinheim: Wiley; 2017. 595 p. 82 Prahl U, editors. Handbook of Software Solutions for ICME. Weinheim: Wiley; 2016 [cited 2025 May 25]. p. 325384. Available at: https://onlinelibrary.wiley.com/doi/10.1002/9783527693566.ch4
83 Castro RN, Cordeiro NB, Silva ALC, Tokumitsu N. Metodologias para a análise da etapa controladora na cinetica de remocao de carbono do aco durante o tratamento sob vacuo. In: XXVIII Seminário sobre Fusão, Refino e Solidificação dos Aços; 1997 May 12-14; Campinas, Brazil. São Paulo: ABM; 1997. p. 469-487.
84 Robertson DGC, Deo B, Ohguchi S. Multicomponent mixed-transport-control theory for kinetics of coupled slag/ metal and slag/metal/gas reactions: applications to desulphurization of molten iron. Ironmaking & Steelmaking. 1984;11(1):41-55.
85 Kitamura SY. Analysis of steelmaking reactions by coupled reaction model. In: Mackey PJ, Grimsey EJ, Jones RT, Brooks GA, editors. Celebrating the megascale. Cham: Springer International Publishing; 2014 [cited 2025 May 25]. p. 317-324. Available at: http://link.springer.com/10.1007/978-3-319-48234-7_28
86 Botelho T, Medeiros GE, de Castro JA, Costa e Silva A. Estudo da taxa de desoxidação e aços desoxidados ao Silício e Manganês. São Paulo: Editora Blucher; 2018 [cited 2025 May 25]. p. 775-786. Available at: http:// abmproceedings.com.br/ptbr/article/estudo-da-taxa-de-desoxidao-em-aos-desoxidados-ao-silicio-e-mangans
87 Ishida J, Yamaguchi K, Sugiura S, Yamano K, Hayakawa S, Demukai N. Effects of the stirring by gas blowing on the metallurgical reactions. Denki-Seikoelectric Furn Steel. 1981;52(1):2-8.
88 Graham KJ. Integrated ladle metallurgy control [thesis]. Hamilton: McMaster University; 2008.
89 Hsieh Y, Watanabe Y, Asai S, Muchi I. Effect of recirculating flow rate of molten steel in refining processes. Tetsu To Hagane. 1983;69(6):596-603.
90 Oeters F, Pluschkell W, Steinmetz E, Wilhelmi H. Fluid flow and mixing in secondary metallurgy. Steel Research. 1988;59(5):192-201.
91 van Ende MA, Kim YM, Cho MK, Choi J, Jung IH. A kinetic model for the Ruhrstahl Heraeus (RH) degassing process. Metallurgical and Materials Transactions B. 2011;42(3):477-489.
92 Goulart LLDO, Castro JAD, Costa e Silva A. Development of a computational thermodynamics EERZ model for the improvement of hot rolled light steel profiles steel refining. Calphad. 2023;81:102550.
93 van Ende MA, Jung IH. A kinetic ladle furnace process simulation model: effective equilibrium reaction zone model using factsage macro processing. Metallurgical and Materials Transactions B. 2017;48(1):28-36.
94 Konar B, Miao K, Quintana N, Wang Z. Study of the vacuum degassing process using the effective equilibrium reaction zone model. In: Iron and Steel Technology Conference; 2024 May 6-9; Columbus, Ohio. Warrendale: AIST; 2024 [cited 2025 May 25]. p. 731-745. Available at: https://imis.aist.org/store/detail.aspx?id=PR-388-077
95 Mason P, Grundy AN, Rettig R, Kjellqvist L, Jeppsson J, Bratberg J. The Application of an Effective Equilibrium Reaction Zone Model Based on CALPHAD Thermodynamics to Steel Making. In: Peng Z, Hwang JY, Downey JP, Gregurek D, Zhao B, Yücel O, et al., editors. 11th International Symposium on High-Temperature Metallurgical Processing. Cham: Springer International Publishing; 2020 [cited 2025 May 25]. p. 101-113. (The Minerals, Metals & Materials Series). Available at: http://link.springer.com/10.1007/978-3-030-36540-0_10
96 You D, Bernhard C, Mayer P, Fasching J, Kloesch G, Rössler R, et al. Modeling of the BOF tapping process: the reactions in the ladle. Metallurgical and Materials Transactions B. 2021;52(3):1854-1865.
97 Kavic D, Bernhard M, Roman Rössler R, Bernhard C. Simulation of Secondary Metallurgical Processes Using Computational Thermodynamics and Comprehensive Statistical Learning Methods. Iron & Steel Technology. (Dec 2024):34–46.
98 Mori K, Sano M. Process kinetics in injection metallurgy. Tetsu To Hagane. 1981;67(6):672-695.
99 Conejo AN, Lara FR, Macias-Hernández M, Morales RD. Kinetic model of steel refining in a ladle furnace. Steel Research International. 2007;78(2):141-150.
100 Oryall GN, Brimacombe JK. The physical behavior of a gas jet injected horizontally into liquid metal. Metallurgical Transactions. B, Process Metallurgy. 1976;7(3):391-403.
101 Pluschkell W. Grundoperationen Pfannenmetallurgischer Prozesse. Stahl und Eisen. 1981;101(13–14):97-103.
102 Pistorius C. Modern tools for steelmaking research and optimization. Iron & Steel Technology. 2022;60-65.
103 Ishii A, Tate M, Ebisawa T, Kawakami K. The ladle refining process for alloyed oil country tubular goods steels at NKK. In: 40th Electric Furnace Conference; 1982 Dec 7-10; Kansas City. Warrendale, PA: ISS-AIME; 1982. p. 137-144.
104 Ogawa K. Slag refining for Production of Clean Steel. In: 143rd–144th Nishiyama Memorial Seminar; 1992; Tokyo. Tokyo: ISIJ; 1992. p. 137-166.
105 Lachmund H, Xie Y, Buhles T, Pluschkell W. Slag emulsification during liquid steel desulphurisation by gas injection into the ladle. Steel Research International. 2003;74(2):77-85.
106 Zhang L, Thomas BG. State of the art in evaluation and control of steel cleanliness. ISIJ International. 2003;43(3):271-291.
107 Peter J, Peaslee KD, Robertson DGC. Experimental study of kinetic processes during the steel treatment at two LMF’s. Aistech-Conference Proceedings. 2005;1:959.
108 Toledo PVV. Modelamento termodinâmico e cinético da dessulfuração de aços ultrabaixo enxofre [dissertation]. Volta Redonda: Universidade Federal Fluminense; 2024.
109 Lindskog N. Studies of Al deoxidation in ASEA-SKF furnaces using radioactive Zr. Scandinavian Journal of Metallurgy. 1975;4:153-160.
110 Burty M, Pussé C, Bertoletti C, Wetta P, Cariola E. Kettlor: efficient stirring in ladle metallurgy. Revue de Métallurgie. 2006;103(11):493-499.
111 Burty M; Europäische Kommission, editors. Development of advanced methods for the control of ladle stirring process: contract no 7210-PR/330, 1 July 2002 to 30 June 2005; final report. Luxembourg: Office for Official Publ. of the European Communities; 2007. 139 p. (EUR Technical Steel Research).
112 Dannert C; Research Fund for Coal and Steel. Improvement of ladle stirring to minimise slag emulsification and reoxidation during alloying and rinsing (Stimprove). Bruxelles: European Commission; 2012.
113 Bock ML. Elaboração de modelo de desulfuração de aço para forno panela [dissertation]. Belo Horizonte: Universidade Federal de Minas Gerais; 2024
114 Poëti K, Costa e Silva A, Oishi K, Harvey J-P. A new interface for Effective Equilibrium Reaction Zone (EERZ) in FactFlow. In: 52nd CALPHAD Conference; 2025 May 25-30; Busan. State College, PA: CALPHAD Inc.; 2025.
115 Goulart LEP, Silva EP, Alves C, Castro JA, Costa e Silva A. Application of a computational thermodynamics effective equilibrium reaction zone (EERZ) to describe the processes from tapping to arrival at the ladle furnace. In: Anais do Seminário de Aciaria, Fundição e Metalurgia de Não-ferrosos; 2022 Jun 7-9; São Paulo. São Paulo: ABM; 2022 [cited 2025 May 25]. Available at: https://abmproceedings.com.br/ptbr/article/ application-of-a-computational-thermodynamics-effective-equilibrium-reaction-zone-eerz-to-describe-theprocesses-from-tapping-to-arrival-at-the-ladle-furnace
116 Thermo-Calc Software. GMH Teams up with Thermo-Calc Software to Develop a Physical Model of Secondary Steelmaking Metallurgy [Internet]. [cited 2025 May 25]. Available at: https://thermocalc.com/blog/gmh-teams-upwith-thermo-calc-software-to-develop-a-physical-model-of-secondary-steelmaking-metallurgy/
117 Demuner D, Carvalho H, Castro L, Viana M Jr. BOF process optimization and technology improvements at ternium Brazil. In: Association for Iron and Steel Technology. Proceedings of the Iron and Steel Technology Conference – AISTech 2019; 2019 May 6-9; Pittsburgh, United States. Warrendale: AIST; 2019 [cited 2025 May 25]. p. 897-912. Available at: https://imis.aist.org/store/detail.aspx?id=PR-377-094
Submetido em:
10/06/2025
Aceito em:
01/07/2025