Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20253293
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Influência da temperatura de envelhecimento na dureza do aço inoxidável 17-4 PH produzido por Fused Filament Fabrication (FFF)

Influence of aging temperature on the hardness of 17-4 PH stainless steel produced by fused filament fabrication (FFF)

Vitor Mendes Cavalheiro, Eduardo Luis Schneider, Marcelo Favaro Borges, Afonso Reguly, Jorge Luiz Braz Medeiros, Luciano Volcanoglo Biehl, Wagner Caramez, Bruno Oliveira, Julio Cesar Martini

Downloads: 1
Views: 22

Resumo

A liga 17-4 PH destaca-se pela sua alta resistência mecânica e à corrosão. Com o avanço da FFF, torna-se importante entender a influência dos tratamentos térmicos nessas peças. Este estudo avalia a resposta em dureza do 17-4 PH fabricado por FFF submetido a solubilização (1150 °C/60 min) e envelhecimento a 480 °C e 620 °C por 30, 60 e 90 min, comparando os resultados com valores obtidos por métodos convencionais. A condição de 480 °C/60 min atingiu 36 HRC, enquanto 620 °C apresentou pico de 28 HRC em 30 min, reduzindo-se com tempos maiores. A porosidade remanescente de ~12% nas amostras FFF resultou em diminuição de ~18,2% (480 °C) e ~15,6% (620 °C) em relação às durezas convencionais para 60 min. Os resultados confirmam que o FFF reproduz o comportamento típico de endurecimento por precipitação da liga 17-4 PH, oferecendo uma rota de menor custo e boa flexibilidade geométrica para aplicações em que a dureza máxima não é o principal critério de projeto.
 

Palavras-chave

Aço inoxidável 17-4 PH; Manufatura aditiva; Fabricação por Fusão de Filamento (FFF); Endurecimento por precipitação

Abstract

The 17-4 PH alloy stands out for its high mechanical strength and corrosion resistance. With the advancement of FFF, it becomes important to understand the influence of heat treatments on such parts. This study evaluates the hardness response of 17-4 PH manufactured by FFF after solution treatment (1150 °C/60 min) and aging at 480 °C and 620 °C for 30, 60, and 90 min, comparing the results with values reported for conventional processing. The 480 °C/60 min condition reached 36 HRC, whereas aging at 620 °C showed a peak of 28 HRC at 30 min, decreasing at longer times. The ~12% residual porosity in FFF samples resulted in hardness reductions of ~18.2% (480 °C) and ~15.6% (620 °C) compared to conventional values at 60 min. The results confirm that FFF reproduces the characteristic precipitation-hardening behavior of 17-4 PH, offering a lower-cost and geometrically flexible alternative for applications in which maximum hardness is not the primary design requirement.
 

Keywords

17-4 PH stainless steel; Additive manufacturing; Fused Filament Fabrication (FFF); Precipitation hardening

Referências

1 Sowa R, Parlinska WM, Arabasz S, Dziedzic A, Dul I. Influence of double solution treatment on hardness in 17-4 PH steel. Zastita Mater. 2015;56(3):261-268. https://doi.org/10.5937/ZasMat1503261S.

2 Viswanathan UK, Banerjee S, Krishnan R. Effects of aging on the microstructure of 17-4 PH stainless steel. Materials Science and Engineering A. 1988;104:181-189. https://doi.org/10.1016/0025-5416(88)90420-X.

3 ASTM International. ASTM A705/A705M-23: Specification for age-hardening stainless steel forgings. West Conshohocken (PA): ASTM International; 2023. https://doi.org/10.1520/A0705_A0705M-23.

4 Murayama M, Katayama Y, Hono K. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 1999;30A(2):345-353. https://doi.org/10.1007/s11661-999-0323-2.

5 Othen PJ, Jenkins ML, Smith GDW. High-resolution electron microscopy studies of Cu precipitates in α-Fe. Philosophical Magazine. A. Physics of Condensed Matter. Defects and Mechanical Properties. 1994;70(1):1-24. https://doi.org/10.1080/01418619408242533.

6 Chung CY, Tzeng YC. Effects of aging treatment on ε-Cu precipitation and mechanical properties of MIM 17-4 PH stainless steel. Materials Letters. 2019;237:228-231. https://doi.org/10.1016/j.matlet.2018.11.107.

7 Li K, Yang T, Gong N, Wu J, Wu X, Zhang DZ, et al. Additive manufacturing of ultra-high strength steels: a review. Journal of Alloys and Compounds. 2023;965:171390. https://doi.org/10.1016/j.jallcom.2023.171390.

8 Hu Z, Zhu H, Zhang H, Zeng X. Experimental investigation on selective laser melting of 17-4 PH stainless steel. Optics & Laser Technology. 2017;92:1-7. https://doi.org/10.1016/j.optlastec.2016.07.012.

9 Li C, Chen Y, Zhang X, Liu T, Peng Y, Wang K. Effect of heat treatment on microstructure and mechanical properties of 17-4 PH stainless steel manufactured by laser powder bed fusion. Journal of Materials Research and Technology. 2023;26:5707-5715. https://doi.org/10.1016/j.jmrt.2023.08.283.

10 Cheruvathur S, Lass EA, Campbell CE. Additive manufacturing of 17-4 PH stainless steel: post-processing heat treatment to achieve uniform microstructure. Journal of the Minerals Metals & Materials Society. 2016;68(3):930- 942. https://doi.org/10.1007/s11837-015-1754-4. PMid:39545097.

11 Yu C, Wang H, Yu Z, Huang Y, Xi M, Chen J, et al. Improving mechanical properties and isotropy of laser DED 17-4 PH stainless steel by ultrasonic vibration. Scripta Materialia. 2023;236:115673. https://doi.org/10.1016/j. scriptamat.2023.115673.

12 Mändl S, Fritzsche B, Manova D, Hirsch D, Neumann H, Richter E, et al. Wear reduction in AISI 630 martensitic stainless steel after nitrogen ion implantation. Surface and Coatings Technology. 2005;194(2-3):1-6. https://doi. org/10.1016/j.surfcoat.2004.05.031.

13 Shoushtari MRT. Effect of ageing heat treatment on corrosion behavior of 17-4 PH stainless steel in 3.5% NaCl. Int J ISSI. 2010;7(1):33-36.

14 Varney TC, Burns DE, Rottmann PF. Effects of heat treatment and geometry on mechanical properties of additively manufactured 17-4 PH stainless steel. Materials Science and Engineering A. 2024;147199. https://doi.org/10.1016/j. msea.2024.147199.

15 Sun XY, Zhang B, Lin HQ, Zhou Y, Sun L, Wang JQ, et al. Correlations between stress corrosion cracking susceptibility and grain boundary microstructures in Al-Zn-Mg alloy. Corrosion Science. 2013;77:103-112. https:// doi.org/10.1016/j.corsci.2013.07.032.

16 Shi X, Ma S, Liu C, Chen C, Wu Q, Chen X, et al. Performance of high layer thickness in selective laser melting of Ti6Al4V. Materials (Basel). 2016;9(12):975. https://doi.org/10.3390/ma9120975. PMid:28774097.

17 BASF. Mixture for use in a fused filament fabrication process. Patent WO2016012486A1. 2016.

18 Allahverdi M, Danforth SC, Jafari M, Safari A. Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society. 2001;21(10-11):1485-1490. https://doi.org/10.1016/ S0955-2219(01)00047-4.

19 Thompson SM, Bian L, Shamsaei N, Yadollahi A. An overview of direct laser deposition for additive manufacturing: Part I. Additive Manufacturing. 2015;8:36-62. https://doi.org/10.1016/j.addma.2015.07.001.

20 Frazier WE. Metal additive manufacturing: a review. Journal of Materials Engineering and Performance. 2014;23(6):1917-1928. https://doi.org/10.1007/s11665-014-0958-z.

21 Emelogu A, Marufuzzaman M, Thompson SM, Shamsaei N, Bian L. Additive manufacturing of biomedical implants: a feasibility analysis. Additive Manufacturing. 2016;11:97-113. https://doi.org/10.1016/j. addma.2016.04.006.

22 Levy GN, Schindel R, Kruth JP. Rapid manufacturing and rapid tooling with layer manufacturing technologies. CIRP Annals. 2003;52(2):589-609. https://doi.org/10.1016/S0007-8506(07)60206-6.

23 Groover MP. Fundamentals of modern manufacturing: materials, processes, and systems. 7th ed. Hoboken: Wiley; 2020.

24 Gloeckle C, Konkol T, Jacobs O, Limberg W, Ebel T, Handge UA. Processing of polymer–metal feedstocks for fused filament fabrication and production of metallic implants. Materials (Basel). 2020;13(19):1-16. https://doi. org/10.3390/ma13194413. PMid:33022989.

25 Godec D, Cano S, Holzer C, Gonzalez-Gutierrez J. Optimization of the 3D printing parameters for tensile properties of FFF 17-4 PH stainless steel. Materials (Basel). 2020;13(3):774. https://doi.org/10.3390/ma13030774. PMid:32046236.

26 Zhang Y, Roch A. Fused filament fabrication and sintering of 17-4 PH stainless steel. Manufacturing Letters. 2022;33:29-32. https://doi.org/10.1016/j.mfglet.2022.06.004.

27 Pan L, Kwok CT, Niu B, Huang X, Cao Y, Zou X, et al. Enhancement in hardness and corrosion resistance of DED 17-4 PH stainless steel via heat treatment. Journal of Materials Research and Technology. 2023;23:1-14. https://doi. org/10.1016/j.jmrt.2023.01.114.

28 Hsiao CN, Chiou CS, Yang JR. Aging reactions in a 17-4 PH stainless steel. Materials Chemistry and Physics. 2002;74(2):134-142. https://doi.org/10.1016/S0254-0584(01)00460-6.

29 BASF. BASF 3D Printing Solutions GmbH. Process guidelines. Heidelberg: BASF; 2022.

30 DIN Media. DIN 50125:2022-08: Testing of metallic materials – tensile test pieces. Berlin: DIN Media; 2022. https://doi.org/10.31030/3337825.

31 ASTM International. ASTM E18-22: Test methods for Rockwell hardness of metallic materials. West Conshohocken (PA): ASTM International; 2022. https://doi.org/10.1520/E0018-22.

32 Associação Brasileira de Normas Técnicas. NBR 13284:1995: Preparação de corpos de prova para análise metalográfica. Rio de Janeiro: ABNT; 1995.

33 Li K, Sridar S, Tan S, Xiong W. Effect of homogenization on precipitation behavior and strengthening of 17-4 PH stainless steel fabricated by LPBF. arXiv. 2021:1-26.

34 Gonzalez-Gutierrez J, Guráň R, Spoerk M, Holzer C, Godec D, Kukla C. 3D printing conditions determination for feedstock used in fused filament fabrication of 17-4 PH stainless steel parts. Metalurgija. 2018;57(1-2):117-120.


Submetido em:
03/09/2025

Aceito em:
04/12/2025

6965419da953956856107304 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections