Análise estatística das propriedades mecânicas de resistência à tração de polímeros termoplásticos (EVA, PEBD, PP) após exposição a diferentes solventes químicos
Statistical analysis of the tensile strength mechanical properties of thermoplastic polymers (EVA, LDPE, PP) after exposure to different chemical solvents
Lara Vasconcellos Ponsoni, Marina Kauling de Almeida, Kristian Madeira, Gustavo Pacheco Militão, Eduardo Junca, Matheus Vinicius Gregory Zimmermann
Resumo
A resistência química de polímeros termoplásticos é fundamental para garantir sua durabilidade em aplicações industriais. Neste estudo, avaliou-se o comportamento de PP, EVA e PEBD após exposição a acetona, pentano, hidróxido de sódio, ácido acético e ácido sulfúrico por 24 e 48 horas. Corpos de prova moldados por injeção (ASTM D638-03) foram submetidos a ensaios de tração, com análise estatística por ANOVA, teste t e Tukey (α = 0,05). O EVA apresentou maior sensibilidade, com reduções marcantes no módulo elástico e na tensão máxima, especialmente para o pentano, que diminuiu a tensão de 23,02 MPa (puro) para 11,68 MPa (24 h) e o módulo de 22,96 MPa para 9,52 MPa (24 h). O PEBD e o PP mostraram resistência moderada, embora mais afetados por solventes apolares; no PEBD, o módulo caiu de 40,71 MPa para 21 MPa (pentano), enquanto no PP a redução foi menos intensa, de 596,61 para 445,68 MPa. As diferenças entre 24 e 48 horas foram pequenas, sugerindo que a degradação mecânica ocorre majoritariamente nas primeiras 24 horas. Os resultados reforçam a importância da composição polimérica, da polaridade do solvente e do tempo de exposição no projeto de materiais para ambientes quimicamente agressivos.
Palavras-chave
Abstract
The chemical resistance of thermoplastic polymers is essential to ensure their durability in industrial applications. In this study, the behavior of PP, EVA, and LDPE was evaluated after exposure to acetone, pentane, sodium hydroxide, acetic acid, and sulfuric acid for 24 and 48 hours. Injection-molded test specimens (ASTM D638-03) were subjected to tensile tests, with statistical analysis by ANOVA, t-test, and Tukey (α = 0.05). EVA showed greater sensitivity, with marked reductions in elastic modulus and maximum stress, especially for pentane, which decreased stress from 23.02 MPa (pure) to 11.68 MPa (24 h) and modulus from 22.96 MPa to 9.52 MPa (24 h). LDPE and PP showed moderate resistance, although they were more affected by nonpolar solvents; in LDPE, the modulus fell from 40.71 MPa to 21 MPa (pentane), while in PP the reduction was less intense, from 596.61 to 445.68 MPa. The differences between 24 and 48 hours were small, suggesting that mechanical degradation occurs mainly in the first 24 hours. The results reinforce the importance of polymer composition, solvent polarity, and exposure time in the design of materials for chemically aggressive environments.
Keywords
References
1 Sazali N, Ibrahim H, Jamaludin AS, Mohamed MA, Salleh WNW, Abidin MNZ. Degradation and stability of polymer: a mini review. IOP Conf Ser Mater Sci Eng. 2020;788(1):012048. https://doi.org/10.1088/1757- 899X/788/1/012048.
2 Vohlídal J. Polymer degradation: a short review. Chem Teach Int Best Pract Chem Educ. 2021;3(2):213-220. https:// doi.org/10.1515/cti-2020-0015.
3 De Paoli MA. Degradação e estabilização de polímeros. São Paulo: Chemkeys; 2008.
4 Kulkarni A, Dasari H. Current status of methods used in degradation of polymers: a review. MATEC Web Conf. 2018;144:02023. https://doi.org/10.1051/matecconf/201814402023.
5 Wada H, Ishikawa M. Degradation mechanism and stabilization of polypropylene induced by chemical solutions. Kobunshi Ronbunshu. 2006;63(6):383-389. https://doi.org/10.1295/koron.63.383.
6 Yang M, Liu Q, Deng Y, Liu C, Xu J, Jian X, et al. Effect of acid soak treatment of the precursor on the structure and properties of polypropylene-based carbon fibers. Inorganic Chemistry Communications. 2024;169(113024):113024. https://doi.org/10.1016/j.inoche.2024.113024.
7 Cameron GG, Main BR. The action of concentrated sulphuric acid on polyethylene and polypropylene: part 1 -evolution of sulphur dioxide and carbon dioxide. Polymer Degradation & Stability. 1983;5(3):215-225. https://doi. org/10.1016/0141-3910(83)90012-5.
8 Kiran E, Zhuang W. Solubility of polyethylene in n-pentane at high pressures. Polymer. 1992;33(24):5259-5263. https://doi.org/10.1016/0032-3861(92)90810-J.
9 Tambe SP, Singh SK, Patri M, Kumar D. Ethylene vinyl acetate and ethylene vinyl alcohol copolymer for thermal spray coating application. Progress in Organic Coatings. 2008;62(4):382-386. https://doi.org/10.1016/j. porgcoat.2008.02.006.
10 Dooher T, Saifullah A, Ullah J, Magee C, Mulholland A, Dixon D. Environmental stress cracking of polymers: case studies from industry (ABS and LDPE). Engineering Failure Analysis. 2022;138:106120. https://doi.org/10.1016/j. engfailanal.2022.106120.
11 Fayolle B, Audouin L, Verdu J. A critical molar mass separating the ductile and brittle regimes as revealed by thermal oxidation in polypropylene. Polymer. 2004;45(12):4323-4330. https://doi.org/10.1016/j. polymer.2004.03.069.
12 Robeson LM. Environmental stress cracking: a review. Polymer Engineering and Science. 2013;53(3):453-467. https://doi.org/10.1002/pen.23284.
13 Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus. 2013;2(1):398. https://doi.org/10.1186/2193-1801-2-398.
14 American Society for Testing and Materials. ASTM D638-03: standard test method for tensile properties of plastics. West Conshohocken: ASTM International; 2003.
15 Ponsoni LV, Almeida MK, Madeira K, Militão GP, Zimmermann MVG. Statistical analysis of the substitution of inorganic fibers and fillers with vegetable fibers and fillers in polystyrene composites. Journal of Applied Polymer Science. 2024;141(24):e55497. https://doi.org/10.1002/app.55497.
16 Luo R, Miao J, Zhao Y, Chen S, Yang Y, Lu Q, et al. The swelling mechanism of ethylene-vinyl acetate polymer in different solvents via molecular dynamics and experimental studies. Soft Matter. 2025;21(4):708-718. https://doi. org/10.1039/D4SM01061B.
17 He Y, Ke H, Lu Y. Alcoholysis of ethylene-vinyl acetate copolymer catalyzed by alkaline: a kinetic study based on in situ FTIR spectroscopy. Chemical Engineering Journal. 2023;464:142695. https://doi.org/10.1016/j. cej.2023.142695.
18 Contino M, Andena L, Rink M. Environmental stress cracking of high-density polyethylene under plane stress conditions. Engineering Fracture Mechanics. 2021;241:107422. https://doi.org/10.1016/j.engfracmech.2020.107422.
19 Thuy M, Pedragosa-Rincón M, Niebergall U, Oehler H, Alig I, Böhning M. Environmental stress cracking of high-density polyethylene applying linear elastic fracture mechanics. Polymers. 2022;14(12):2415. https://doi. org/10.3390/polym14122415.
20 Lützow N, Tihminlioglu A, Danner RP, Duda JL, De Haan A, Warnier G, et al. Diffusion of toluene and n-heptane in polyethylenes of different crystallinity. Polymer. 1999;40(10):2797-2803. https://doi.org/10.1016/S0032- 3861(98)00473-X.
21 Głogowska K, Pączkowski P, Gawdzik B. Assessment study on the solvent resistance of low-density polyethylene with pumpkin seed hulls. Materials. 2022;16(1):138. https://doi.org/10.3390/ma16010138.
22 Fonseca C, Pereña JM, Fatou JG, Bello A. Sulphuric acid etching of polyethylene surfaces. Journal of Materials Science. 1985;20(9):3283-3288. https://doi.org/10.1007/BF00545196.
Submitted date:
08/26/2025
Accepted date:
01/09/2026
