Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.00302011
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

CURVAS DE VIDA EM FADIGA DE BAIXO CICLO DE LIGAS SUPERELÁSTICAS DE NiTi

LOW CYCLE FATIGUE LIFE CURVES OF NiTi SUPERELELASTIC ALLOYS

Figueiredo, Ana Maria G.; Modenesi, Paulo José; Buono, Vicente Tadeu L.

Downloads: 0
Views: 1072

Resumo

Este trabalho apresenta um estudo da vida em fadiga de baixo ciclo controlada por deformação (curvas ea-Nf) de fios de NiTi rompidos em ensaios de flexão rotativa. Foram ensaiados fios de NiTi superelástico, austenítico estável, bifásico e martensítico estável sob amplitudes de deformação variando de 0,6% a 12%, além de um fio de aço inoxidável austenítico sob amplitudes de deformação de 0,4% a 1,1%. As curvas ea-Nf foram comparadas entre si e com as encontradas na literatura. Os valores de vida em fadiga dos fios de NiTi são superiores aos do aço inoxidável austenítico em todas as condições estudadas. As curvas ea-Nf dos fios de NiTi bifásico e superelástico, sob amplitude de deformação inferiores a 4%, são coerentes com as da literatura e próximas à curva do fio austenítico estável. Sob amplitudes de deformação maiores, a vida em fadiga passa a crescer com a deformação, até que seja atingida a região próxima à curva do fio martensítico estável. Esse comportamento incomum resulta numa curva em forma de "Z". Tais resultados estão possivelmente vinculados à inibição da transformação martensítica na ponta da trinca, devida à redução de volume que a acompanha, até que ocorra transformação generalizada do material.

Palavras-chave

Ligas de NiTi, Superelasticidade, Vida em fadiga

Abstract

This paper presents an analysis of low cycle fatigue life under strain control (ea-Nf curve) of NiTi wires submitted to bending-rotation fatigue. Fatigue tests were carried out on stable austenitic, superelastic, biphasic and stable martensitic NiTi wires, with strain amplitudes from 0.6% to 12%. An austenitic stainless steel wire was also tested for comparison, with strain amplitudes from 0.4% to 1.1%. The resulting ea-Nf curves together with data from the literature are compared. Fatigue life of the NiTi wires were always longer than that of the austenitic stainless steel in all investigated conditions. For strain amplitudes up to 4%, ea-Nf curves for biphasic and superelastic wires are consistent with those values reported in the literature, closely approaching the stable austenitic wire’s curve. For higher strain amplitudes, it is found that fatigue life of superelastic and biphasic wires increases with strain until they approach the fatigue life curve of stable martensite wire. This unusual behavior results in a "Z-shaped" curve for high strain values. It is possibly linked to the inhibition of martensitic transformation ahead of the crack tip, caused by the volume reduction inherent to that phase transformation, until this transformation occurs all over the material.

Keywords

NiTi alloys, Superelasticity, Fatigue life

Referências



1 MELTON, K.N. General applications of SMA’s smart materials. In: OTSUKA, K.; WAYMAN, C.M. Shape memory materials. United Kingdom: Cambridge University Press, 1998. Cap. 10, p. 220-239.

2 WAYMAN, C.M. Some applications of shape-memory alloys. Journal of Metals, v. 32, n. 6, p. 129-1137, June 1980.

3 OTSUKA, K.; REN, X. Recent developments in the research of shape memory alloys. Intermetallics, v. 7, n. 5, p. 511- 528, May 1999.

4 OTSUKA, K.; WAYMAN, C.M. Shape memory materials. United Kingdom: Cambridge University Press, 1998. 284 p.

5 MELTON, K.N.; MERCIER, O. Fatigue of NiTi thermoelastic martensites. Acta Metallurgica, v. 27, n. 1, p. 137-144, January 1979.

6 DAUSKARDT, R.H.; DUERIG,T.W.; RITCHIE,R.O. Effects of in situ phase transformation on fatigue-crack propagation in titanium-nickel shape-memory alloys. In: OTSUKA, K.; SHIMIZU, K. (Eds.) Proceedings of MRS International Meeting on Advanced Materials. Pittsburgh: Materials Research Society, 1989. v. 9, p. 243-249.

7 HOLTZ, R.L.; SADANANDA, K.; IMAN, M.A., Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature. International Journal of Fatigue, v. 21, supplement 1, p. S137-S145, September 1999.

8 McKELVEY, A.L.; RITCHIE, R.O. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metallurgical and Materials Transactions A, v. 32A, n. 3A, p. 731-743, March 2001.

9 HUMBEECK, J.V.; STALMANS, R. Characteristics of shape memory alloys. In: OTSUKA, K.; WAYMAN, C.M. Shape memory materials. United Kingdom: Cambridge University Press, 1998. Cap. 7, p.149-183.

10 DUERIG,T.; PELTON, A.; STOCKEL, D., An overview of nitinol medical applications. Materials Science and Engineering A, v. 273-275, p.149-160, December 1999.

11 McNICHOLS Jr., J.L.; BROOKES, P.C. NiTi fatigue behavior, Journal of Applied Physics, v. 52, n.12, p. 7442-7444, December 1981.

12 TOBUSHI, H.; HACHISUKA,T.;YAMADA, S.; LIN, P. Rotating-bending fatigue of a TiNi shape memory alloy wire. Mechanics of Materials, v. 26, n.1, p. 35-42, July-August 1997.

13 TOBUSHI, H.; NAKAHARA, T.; SHIMENO, Y.; HASHIMOTO,T., Low-cycle fatigue of NiTi shape memory alloy and formulation of fatigue life. Transactions of the American Society of Mechanical Engineers (ASME): Journal of Engineering Materials and Technology, v. 112, n. 2, p. 186-191, April 2000.

14 YANG, J. Fatigue characterization of superelastic Nitinol. IN: Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA: SMST Publication, 1997, p. 479-484.

15 SAWAGUSHI, T.; KAUSTRATER, G.; YAWNY, A.; WAGNER, M.; EGGELER,G. Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape memory wires in bending-rotation fatigue. Metallurgical and Materials Transactions A, v. 34A, n. 12, p.2847-2860, 1 December 2003.

16 EGGELER, G.; HORNBOGEN, E.; YAWNY, A.; HECKMANN, A.; WAGNER, M. Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering A, v. 378, n. 1-2, p. 24-33, 25 July 2004.

17 WAGNER, M., SAWAGUCCHI, T.; KAUSTRATER, G.; HOFFKEN, D.; EGGELER,G. Structural fatigue of pseudoelastic NiTi shape memory wires, Materials Science and Engineering A, v. 378, n. 1-2, p. 105-109,

25 July 2004.

18 YOUNG,J.M.; VAN VLIET, K.J. Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue. Journal of Biomedical Materials Research, v. 72B, n. 1, p. 17-26, August 2004 .

19 MELTON, K.N.; MERCIER, O. The effect of the martensitic phase transformation on the low cycle fatigue behavior of polycrystalline Ni-Ti and Cu-Zn-Al alloys. Materials Science and Engineering, v. 40, n. 1, p. 81-87, September 1979.

20 FIGUEIREDO, A.M.F. Caracterização da fadiga mecânica de baixo ciclo em ligas superelásticas de NiTi. 2006. 235p. Tese (Doutorado em Engenharia Metalúrgica e de Minas) - Escola de Engenharia da Universidade Federal de Minas Gerais. Belo Horizonte, 2006.

21 MIYAZAKI, S.; MIZUKOSHI, K.; UEKI, T.; SAKUMA, T.; LIU, Y. Fatigue life of Ti-50at.%Ni and Ti-40Ni-10Cu(at%) shape memory alloys wires. Materials Science and Engineering A, v. 273-275, p. 658-663, 15 December 1999.

22 SABURI, T. Ti-Ni shape-memory alloys. In: OTSUKA, K.; WAYMAN, C.M. Shape memory materials. United Kingdom: Cambridge University Press, 1998. Cap. 3, p. 49-96.

23 McNANEY, J.M.; IMBENI, V.; JUNG, Y.; PAPADOPOULOS, P.; RITCHIE, R.O. An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mechanics of Materials, v. 35, n. 10, p. 969-986, October 2003.
588696d47f8c9dd9008b46fe 1573492069 Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections