Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.00404002
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

AÇOS FERRAMENTA PARA TRABALHO A QUENTE COM BAIXO TEOR DE SILÍCIO: CARACTERIZAÇÃO E APLICAÇÕES

LOW SILICON HOT WORK TOOL STEELS: CHARACTERIZATION AND APPLICATIONS

Mesquita, Rafael Agnelli; Barbosa, Celso Antonio; Gonçalves, Cristiane Sales; Kestenbach, Hans-Jurgen

Downloads: 0
Views: 1376

Resumo

Os aços ferramenta para trabalho a quente são empregados como matrizes para conformação de metais em alta temperatura. Recentemente, novos aços ferramenta, com menor teor de silício, têm sido utilizados, gerando substancial melhoria de desempenho das matrizes. O presente trabalho discute resultados da caracterização mecânica e microestrutural de tais aços, também apresentando algumas análises de casos. As propriedades mecânicas foram avaliadas quanto à dureza e tenacidade em impacto, em função da temperatura de revenimento. Para caracterização microestrutural, foi utilizada a técnica de microscopia eletrônica de transmissão, com o objetivo de caracterizar os carbonetos secundários, os principais responsáveis pelo endurecimento dos materiais. São observadas diferenças significativas dos carbonetos secundários em função do teor de silício, estando relacionadas, diretamente, às propriedades mecânicas avaliadas. A redução do teor de silício diminui a presença de carbonetos finos e agulhados; isto pode explicar a menor tenacidade dos aços ferramenta de alto teor de silício, sendo proposto um possível mecanismo. Desta forma, os resultados mecânicos e microestruturais justificam o aumento de desempenho desta nova classe de aços ferramenta para trabalho a quente, com menor teor de silício.

Palavras-chave

Aço-ferramenta, Silício, Tenacidade, Desempenho.

Abstract

Hot work tool steels are mainly used as dies for hot forming processes. New grades have been recently developed, with lower silicon content, leading to a substantial performance increase. The present paper describes the mechanical properties and microstructural characterization of such hot work steels, as well as case studies. Hardness and toughness were determined for a wide range of tempering temperatures; concerning microstructural characterization, transmission electron microcopy was used for observing secondary carbides – the main responsible for the hot strength of these steels. Important differences were observed on the secondary carbides, which are considered responsible for the differences on the mechanical properties. The reduction in silicon content reduces the amount of fine needle shaped carbides; this can explain the lower toughness of high silicon content grades and a possible mechanism is proposed. Therefore, the microstructural and mechanical results enable the understanding of the higher performance of this new class of hot work tool steels, with lower silicon content.

Keywords

Tool steel, Phosphorus, Silicon, Toughness

Referências

1 ROBERTS, G.; KRAUSS, G.; KENNEDY, R. Tool Steels. 5. ed. Materials Park, Ohio: ASM International, 1998. p. 1-123 e p. 219-50

2 MESQUITA, R. A.; FRANÇA, L. C.; BARBOSA, C. A. Análise de casos e aplicações dos aços TENAX 300 e VHSUPER. Tecnologia em Metalurgia e Materiais, v. 2, n.1, p.70-5, jul./set. 2005

3 SCHRUFF, I. Comparison of properties and characteristics of hot-work tool steels X 38 CrMoV 5 1 (Thyrotherm 2343), X 40 CrMoV 5 1 (Thyrotherm 2344), X 32 CrMoV 3 3 (Thyrotherm 2365) and X 38 CrMoV 5 3 (Thyrotherm 2367). Thyssen Edelstahlwerke Technische Berichte. Special Issue, p. 32-44, May 1990

4 GRELLIER, A.; SIAUT, M. A new hot work tool steel for high temperature and high stress service conditions.; In: INTERNATIONAL CONFERENCE ON TOOLING, 6., 2002, Karlstad, Suécia. Proceedings… Karlstad: Karlstad University, 2002. p. 33-41

5 SANDBERG, O.; KLARENFJORD, B.; LINDOW, H. A new hot work tool steel with improved properties. In: INTERNATIONAL CONFERENCE ON TOOLING, 5., 1999, Leoben, Austria. Proceedings… Austria: Institut für Metallkunde und Werkstoffprüfung, 1999. p. 601-10

6 FUCHS, K.-D. Hot-work tool steels with improved properties for die casting applications. In: INTERNATIONAL CONFERENCE ON TOOLING, 6., 2002, Karlstad, Suécia. Proceedings... Karlstad: Karlstad University, 2002. p. 15-22

7 MESQUITA, R.A.; FRANÇA, L.C.; BARBOSA, C.. Desenvolvimento de um novo aço ferramenta para trabalho a quente com tenacidade otimizada. In: CONGRESSO ANUAL DA ABM, 57., 2002, São Paulo. Anais... São Paulo: Associação Brasileira de Metalurgia e Materiais, 2002. p. 444-53. 1 CD ROM

8 MESQUITA, R.A.; BARBOSA, C.A. Desenvolvimento de um novo aço ferramenta com superior resistência a quente. In: CONGRESSO ANUAL DA ABM, 60., 2005, Belo Horizonte. Anais... São Paulo: Associação Brasileira de Metalurgia e Materiais, 2005. p. 27-37. 1 CD ROM

9 GARRISON JR, W.M. Influence of silicon on strength and toughness of 5wt-%Cr secondary hardening steel. Materials Science and Technology, v. 3, n. 4, p. 256-9, April 1987

10 DELAGNES, D.; LAMESLE, P.; MATHON, M.H.; MEBARKI, N.; LEVAILLANT, C. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5% Cr tempered martensitic steel. Materials Science & Engineering A, v. 394, n.1-2, p. 435-44, 2005

11 UMINO, M.; SERA, T.; KONDO, K.; OKADA, Y.; TUBAKINO, H. Effect of silicon content on tempered hardness, high temperature strength and toughness of hot working tool steels. Tetsu-to-Hagane, v. 89, n. 6, p. 673-9, June 2003

12 ULE, B.; VODOPIVEC, F.; PRISTAVEC, M.; GRESOVNIK, F. Temper embrittlement of hot work die steel. Materials Science and Technology, v. 6, n. 12, p. 1181-5, Dec. 1990

13 MESQUITA, R.A.; BARBOSA, C.A. Efeito do Si e P na tenacidade do aço H11, utilizado em ferramentas de trabalho a quente. In: CONGRESSO ANUAL DA ABM, 61., 2006, São Paulo. Anais... São Paulo: Associação Brasileira de Metalurgia e Materiais, 2006. 1 CD ROM

14 MESQUITA, R.A.; BARBOSA, C.A. Aços ferramenta de alto desempenho para matrizes de fundição sob pressão. Metalurgia & Materiais, v. 59, n. 539, p. 17-22, Nov. 2003

15 SCHMIDT, M. L. Effect of austenitizing temperature on laboratory treated and large section sizes of H-13 tool steel. In: KRAUSS, G.; NORDBERG, H. Tool materials for moulds and dies. Illinois, EUA: Colorado School of Mines, 1987. p. 118-64

16 BANERJEE, B.R. Embrittlement of high-strength tempered alloy martensites. Journal of the Iron and Steel Institute, v. 203, Part 2, p. 166-74, Feb. 1965

17 SONDEREGGER, B.; KOZESCHNIK, E.; BISCHOF, M.; LEITNER, H.; CLEMENS, H.; SVOBODA, J.; FISCHER, F.D. Characterization and simulation of precipitation kinetics during heat treatment of the hot-work tool steel X38CrMoV 5-3. In: CONFERENCE ON TOOLING: Tooling materials and their applications from research to market. 7., 2006, Turin, Italy. Proceedings... Turin: Politecnico di Torino, 2006. v. 1, p. 533-40

18 LEITNER, H.; CLEMENS, Characterization of namometer-sized precipitates in tool steels. In: CONFERENCE ON TOOLING: Tooling materials and their applications from research to market. 7., 2006, Turin, Italy. Proceedings... Turin: Politecnico di Torino, V. 1, May 2006, p. 695-706

19 GARRISON Jr, W.M.A comparion of the effects of cobalt, silicon, nickel and aluminum on the tempering response of a medium chromium secondary hardening steel. Journal of the Iron and Steel Institute, v. 46, n. 5, p. 782-4, May 2006

20 OKUNO, T. Effect of microstructure on the toughness of hot work tool steels, AISI H13, H10 and H19. Journal of the Iron and Steel Institute, v. 27, n.1, p.51-59. Jan. 1987

21 THELMING, K-E. Steel and Is Heat Treatment. 2. ed, London: Butterwroth, 1984

22 OLEFJORD, I. Temper embrittlement. International Metals Reviews, v. 23, n. 4, p.149-163, 1978

23 GUTTMANN, M.; DUMOULIN, P.; WAYMAN, M. The thermodynamics of interactive co-segregation of phosphorus and alloying elements in iron and temper-brittle steels. Metallurgical Transactions A, v. 13A, n.10, p. 1693-711, Oct. 1982

24 BRIANT, C.L.; BANERJI, S.K. Intergranular failure in steel: the role of grain boundary composition. International Metals Reviews, v.23, n. 4, p.164-199, Apr. 1978. ZAHUMENSKY, P; JANOVEC, J; BLACH, J. Some aspects of tempered martensite embrittlement in 3Cr-Mo-V steel. ISIJ International, v. 34, n. 6, p. 536-40, 1994

25 SARIKAYA, M; JHINGAN, A.K.; THOMAS, G. Retained austenite and tempered martensite embrittlement in mediumcarbon steels. Metallurgical Transactions A. v.14A, n. 6, p. 1121-33, June 1983

26 THOMAS, G. Retained austenite and tempered martensite embrittlement. Metallurgical Transaction A, v. 9A, n. 3, p. 439-50, Mar. 1978

27 BRIANT, C.L. Role of carbides in tempered martensite embrittlement. Materials Science and Technology, v. 5, n. 2, p. 138-47, Feb. 1989

28 BRIANT, C L; BANERJI, S K. Tempered martensite embrittlement and intergranular fracture in an ultra-high-strength sulfur-doped steel. Metallurgical Transactions A, v. 12A, n. 2, p. 309-19, Feb. 1981

29 YU, J.; McMAHON JR, C.J. The effects of composition and carbide precipitation on temper embrittlement of 2.25 Cr-1 Mo Steel: Part 2. Effects of Mn and Si. Metallurgical Transactions A, v. 11A, n. 2, p. 291-300, Feb. 1980

30 ZIA-EBRAHIMI, F; KRAUSS, G. Mechanisms of tempered martensite embrittlement in medium-carbon steels. Acta Metallurgica et Materialia, v. 32, n. 10, p. 1767-77, Oct. 1984

31 ALTSTETTER, C.J.; COHEN, M.; AVERBACH, L. Effect of silicon on the tempering of AISI 43XX steels. Transactions of the ASM, v. 55, n.1, p. 287-300, 1962

32 OWEN, S. The effect of silicon on the kinetics of tempering. Transactions of the ASM, v. 46, p. 812-829, 1954

33 WANG, R.; ANDRÉN, H.-O., Wisel, H.; DUNLOP, G.L. The role of alloy composition in the precipitation behaviour of high speed steels. Acta Metallurgica et Materialia, v. 40, n. 7, p. 1727-38, July 1992.
588696c37f8c9dd9008b46ad 1573492069 Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections