Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.00404004
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

PARÂMETROS TÉRMICOS, MACROESTRUTURA E MICROESTRUTURA NA SOLIDIFICAÇÃO DIRECIONAL DA LIGA Al-20%Sn

THERMAL PARAMETERS, MACROSTRUCTURE AND MICROSTRUCTURE DURING DIRECTIONAL SOLIDIFICATION OF AN Al-20wt%Sn ALLOY

Cruz, Kleber Agustin S. da; Cheung, Noé; Garcia, Amauri

Downloads: 0
Views: 357

Resumo

As ligas Al-Sn são muito empregadas em aplicações tribológicas e seus componentes têm a característica de serem praticamente imiscíveis, sendo que o tipo de arranjo microestrutural decorrente induz boa resistência ao desgaste. Neste trabalho, foram realizadas análises térmicas e microestruturais ao longo de um lingote de liga Al-20%Sn, obtido por solidificação unidirecional transitória na direção vertical e sentido ascendente. O mapeamento térmico permitiu a obtenção do coeficiente global de transferência de calor metal/molde (hg), com a utilização do método do confronto de perfis térmicos experimentais e simulados numericamente, e da evolução de variáveis térmicas (velocidade de deslocamento da isoterma liquidus e taxa de resfriamento) durante o processo. A caracterização da microestrutura dendrítica foi feita por meio de medidas dos espaçamentos secundários (λ2), que foram devidamente correlacionados com variáveis térmicas de solidificação. A liga Al-20%Sn mostrou um comportamento semelhante ao de outras ligas de alumínio, ou seja, a rede dendrítica tornou-se mais grosseira com a redução da taxa de resfriamento, indicando que a condição de imiscibilidade entre o alumínio e o estanho não interferiu na forma da relação entre espaçamento dendrítico e taxa de resfriamento. É determinada uma lei experimental de crescimento dendrítico.

Palavras-chave

Liga aluminio-estanho, Estrutura dendrítica, Parâmetros térmicos, Solidificação

Abstract

Al-Sn alloys are widely used in tribological applications. Aluminium and tin form immiscible alloys and the type of the microstructural arrangement causes a good wear resistance. In this study, thermal and microstructural analysis were carried out along an Al-20wt%Sn alloy ingot produced by vertical upward directional transient solidification. The experimental thermal readings were fitted to numerical predictions in order to determine the global heat transfer coefficient (hg) and were also used to calculate the evolution of thermal variables (tip growth rate and cooling rate) during solidification. The growth rate and the cooling rate play a key role in the microstructural formation. The dendritic microstructure has been characterized by secondary dendritic arm spacings (λ2) which were experimentally determined and correlated to solidification thermal variables. The behavior presented by the Al-20wt%Sn alloy during solidification was similar to that of other aluminum alloys, i.e., the dendritic network became coarser with decreasing cooling rates, indicating that the immiscibility between aluminum and tin has not a significant effect on the relationship between the secondary dendritic arm spacing and cooling rate. An experimental dendritic growth law has been determined.

Keywords

Alloy Al-Sn, Dendritic structure, Thermal parameters. Solidification

Referências



1 Perrone, A. Al-Sn thin films deposited by pulsed laser ablation. Materials Science and Engineering C, v. 22, n. 2, p. 465-8, Dec. 2002.

2 Pathak , J.P.; Mohan, S. Tribological behavior of conventional Al-Sn and equivalent Al-Pb alloys under lubrication. Bulletin on Materials Science, v. 26, n. 1, p. 315-20, Jan.-Dec. 2003.

3 Yuan , G.C.; Li, Z.J.; Lou, Y.X.; Zhang, X.M. Study on crystallization and microstructure for new series of Al-Sn-Si alloys. Materials Science and Engineering A, v. 280, n. 1, p. 108-15, Mar. 2000.

4 Bouchard, D.; Kirkaldy , J.S. Prediction of dendrite arm spacings in unsteady and steady state heat flow of unidirectionally solidified binary alloys. Metallurgical and Materials Transactions B, v. 28B, n. 4, p. 651-65, Aug.1997.

5 Hunt, J.D.; Lu, S.Z. Numerical modeling of cellular array growth: spacing and structure predictions. Metallurgical and Materials Transactions A, v. 27A, n. 3, p. 611-23, Mar. 1996.

6 Osório, W.R.; Freire, C.M.; Garcia, A. The effect of the dendritic structure on the corrosion resistance of Zn-Al alloys. Journal of Alloys and Compounds, v. 397, n. 1-2, p. 179-91, July 2005.

7 Osório, W.R.; GOULART, P.R.; SANTOS, G.A.; MOURA NETO, C.; Garcia, A. Effect of the dendritic arm spacing on mechanical properties and corrosion resistance of Al 9wtpct Si and Zn 27wtpct Al alloys. Metallurgical and Materials Transactions A, v. 37A, n. 8, p. 2525-38, Aug. 2006.

8 Osório, W.R.; SPINELLI, J.E.; ferreira, i.l.; Garcia, A. The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al-4.5wt%Cu alloy. Electrochimica Acta, v. 52, n.9, p. 3265-73, Feb. 2007.

9 Rocha O.F.L.; Siqueira, C.A.; Garcia, A. Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn-Pb alloys. Materials Science and Engineering A, v. 347, n. 9, p. 59-69, Feb. 2003.

10 Siqueira, C.A.; Cheung, N.; Garcia, A. Solidification thermal parameters affecting the columnar-to-equiaxed transition. Metallurgical and Materials Transactions A, v. 33A, n. 7, p. 2107-18, July 2002.

11 Magnusson, T.; Arnberg, L. Density and solidification shrinkage of hipoeutectic aluminum-silicon alloys, Metallurgical and Materials Transactions A, v. 32A, n. 10, p. 2605-2613, Oct. 2001.

12 Spim, J. A.; Garcia, A. A modified network approach for modeling solidification of complex-shaped domains. Numerical Heat Transfer – B, v. 38, n. 1, p. 75-92, July 2000.

13 CANTÉ, M.V.; CRUZ, K.S.; SPINELLI, J.E.; CHEUNG, N.; GARCIA, A. Experimental analysis of the columnar-toequiaxed transition in directionally solidified Al-Ni and Al-Sn alloys. Materials Letters, v. 61, n.11-12, p. 2135-8, May 2007.

14 Peres, M.D, Siqueira, C.A, Garcia, A. Macrostructural and microstructural development in Al-Si alloys directionally solidified under unsteady-state conditions Journal of Alloys and Compounds, v. 381, n. 1-2, p. 168-81, Nov. 2004.
588696c37f8c9dd9008b46af 1573492069 Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections