Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.00503009
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

SÍNTESE DO INTERMETÁLICO NiAl POR MOAGEM DE ALTA ENERGIA EM MOINHO ATTRITOR

SYNTHESIS OF NiAl INTERMETALLIC USING HIGH-ENERGY MILLING IN AN ATTR ITOR MILL

Kubaski, Evaldo Toniolo; Cintho, Osvaldo Mitsuyuki; Capocchi, José Deodoro T.

Downloads: 0
Views: 1123

Resumo

Pós de Ni e Al foram misturados na composição Ni50Al50 (% atômica). As misturas de pós foram submetidas à moagem de alta energia em moinho Attritor e Spex por diversos tempos. No Attritor, moagens adicionais foram realizadas seguindo um planejamento fatorial em dois níveis e três variáveis. Monitorou-se a evolução da temperatura do jarro durante as moagens. Os produtos foram caracterizados utilizando-se difratometria de raios X e microscopia eletrônica de varredura. A análise dos difratogramas de raios X, em conjunto com as curvas da temperatura do jarro em função do tempo de moagem, indica a formação do composto NiAl tanto em pós processados em moinho Spex quanto Attritor. No entanto, no Spex a formação ocorre para tempos inferiores de moagem. O planejamento fatorial indica que menores poderes de moagem levam a um maior aproveitamento do pó de entrada no Attritor. As micrografias eletrônicas de varredura indicam que as amostras processadas no Attritor produziram partículas na forma de flakes e de menor tamanho em relação àquelas processadas no Spex

Palavras-chave

Moagem de alta energia, Intermetálico NiAl, Planejamento fatorial

Abstract

Ni and Al powders were mixed at Ni50Al50 composition (%at). These mixtures were processed by high-energy milling using Attritor and Spex mills at several milling times. In the Attritor mill, additional millings following a 23 factorial design were performed. Vial temperature during milling was measured. The milling products were characterized by X-ray diffraction (DRX) and scanning electron microscopy (SEM). Analysis of X-ray diffraction patterns, in addition to the evolution of vial temperature during milling, indicate NiAl intermetallic formation either in Spex or Attritor. However, in Spex this compound appears in lower milling times. The factorial design suggests that, when using an Attritor mill, lower ball-to-powder ratios promotes greater values of η. Observing SEM images, the Attritor samples show a flake-like morphology with finer particles as compared to those produced in the Spex mill.

Keywords

High-energy milling, NiAl intermetallic compound, Factorial design

Referências

1 ATZMON, M. In situ thermal observation of explosive compound-formation reaction during mechanical alloying. Physical Review Letters, v. 64, n. 4, p. 487, Jan. 1990.

2 CARDELLINI, F.; MAZZONE, G.; MONTONE, A.; VITTORI ANTISARI, M. Solid state reactions between Ni and Al powders induced by plastic deformation. Acta Metallurgica et Materialia, v.42, n.7, p.2445-51, July 1994.

3 KUBASKI, E.T. Síntese de compostos intermetálicos do sistema Ni-Al utilizando moagem de alta energia. 2005, 151 f. Dissertação (Mestrado em Engenharia e Ciência de Materiais), Universidade Estadual de Ponta Grossa, Ponta Grossa, 2005.

4 KUBASKI, E.T.; MOINHOS, C.; MONLEVADE, E.F.; CAPOCCHI, J.D.T.; CINTHO, O.M. Síntese de intermetálicos do sistema Ni-Al por meio de moagem de alta energia. In: CONGRESSO ANUAL DA ABM, 60., 2005, Belo Horizonte. Anais... São Paulo: ABM, 2005. p. 2168-77.

5 MARTIM, D.R.; PALLONE, E.M.J.A.; BOTTA FILHO, W.J.; TOMASI, R. Síntese de pós compósitos do sistema Al2O3-AlNi usando moagem reativa de alta energia. In: CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS MATERIAIS, 16., 2004, Porto Alegre. Anais... Porto Alegre: UFRGS, 2004. p. 1-9.

6 MOSHKSAR, M.M.; MIRZAEE, M. Formation of NiAl intermetallic by gradual and explosive exothermic reaction mechanism during ball milling. Intermetallics, v. 12, n.12, p.1361-6, Dec. 2004.

7 MURTY, B.S.; SINGH, K.H.S.; PABI, S.K. Synthesis of nanocrystalline NiAl over a wide composition range by mechanical alloying. Bulletin of Materials Science, v. 19, n. 3, p. 565-71, June 1996.

8 PABI, S.K.; MURTY, B.S. Mechanism of mechanical alloying in Ni-Al and Cu-Zn systems. Materials Science and Engineering A, v. 214, n. 1-2, p. 146-52, Ago. 1996.

9 PABI, S.K.; JOARDAR, J.; MANNA, I.; MURTY, B.S. Nanocrystralline phases in Cu-Ni, Cu-Zn and Ni-Al systems by mechanical alloying. Nanostructured Materials, v. 9, n. 1-8, p. 149-52, 1997.

10 JOARDAR, J.; PABI, S.K.; MURTY, B.S. Milling criteria for the synthesis of nanocrystalline NiAl by mechanical alloying. Journal of Alloys and Compounds, v. 429, n. 1-2, p. 204-10, Feb. 2007.

12 JOARDAR, J.; PABI, S.K.; FECHT, H.J.; MURTY, B.S. Stability of nanocrystalline disordered NiAl synthesized by mechanical alloying. Philosophical Magazine Letters, v. 82, n. 9, p.469-75, Sept. 2002.

12 MURTY, B.S.; JOARDAR, J.; PABI, S.K. Influence of Fe and Cr on the disordering behavior of mechanically alloyed NiAl. Nanostructured Materials, v. 7, n. 6, p.691-7, Ago. 1996.

13 NASH, P.; HIGGINS, G.T.; DILLINGER, N.; HWANG, S.J.; KIM, H. Mechanical alloying, characterization and consolidation of Ti-Al-Ni alloys. In: ADVANCES IN POWDER METALLURGY, 2., 1989, San Diego. Proceedings… Princeton: MPIF Metal Powder Industries Federation, 1989. p. 473-9.

14 DOLLAR, M.; DYMEK, S.; HWANG, S.J.; NASH, P. The occurrence of slip in NiAl. Scripta Metallurgica et Materialia, v. 26, n. 1, p. 29-34, Jan. 1992.

15 DYMEK, S.; DOLLAR, M.; HWANG, S.J.; NASH, P. Deformation mechanisms and ductility of mechanically alloyed NiAl. Materials Science and Engineering A, v. 152, n. 1-2, p. 160-5, May 1992.

16 DYMEK, S.; HWANG, S.J.; DOLLAR, M.; KALLEND, J.S.; NASH, P. Microstructure and texture in hot-extruded NiAl. Scripta metallurgica et materialia, v. 27, n. 2, p. 161-6, July 1992.

17 PYO, S.G.; KIM, N.J.; NASH, P. Transmission electron microscopy characterization of mechanically alloyed NiAl powder and hot-pressed product. Materials Science and Engineering A, v. 181-2, p.1169-73, May 1994.

18 BOX, G. E. P.; HUNTER, W. G.; HUNTER, J. S. Statistics for experimenters: an introduction to design, data analysis, and model building. New York: John Willey & Sons, 1978. 652 p.

19 MAURICE, D.; COURTNEY, T.H. Milling dynamics: Part. III. integration of local and global modeling of mechanical alloying devices. Metallurgical and Materials Transactions A, v. 27, n. 7, p. 1981-6, July 1996.

20 MAURICE, D.; COURTNEY, T.H. Milling dynamics: Part. II. dynamics of a SPEX mill and a one-dimensional mill. Metallurgical and Materials Transactions A, v. 27, n. 7, p. 1873-979, July 1996.

21 RYDIN, R.W.; MAURICE, D.; COURTNEY, T. H. Milling dynamics: part I. Attritor dynamics: results of a cinematographic study. Metallurgical Transactions A, v. 24, n. 1, p.175-85, Jan. 1993.

22 KUBASKI, E.T.; CAPOCCHI, J.D.T.; FARIAS, F.A.; MENDES, L.B.; CINTHO, O.M. Effect of the nickel particle size on the high-energy milled mixtures of nickel and aluminum powders. In: MATERIALS SCIENCE AND TECHNOLOGY (MS&T) 2008, 2008, Pittsburgh. Proceedings... Washington: MS&T Partner Societies, 2008. p. 2474-82.

23 HWANG, S.J. The microstructure and mechanical properties of mechanically alloyed nickel aluminide based alloys. 1992. 223 f. Tese (Doctor of Philosophy in Metallurgical and Materials Engineering) – Illinois Institute of Technology, Chicago, 1992.

24 SURYANARAYANA, C. Mechanical alloying and milling. Progress in Materials Science, v. 46, n. 1-2, p.1-184, Jan. 2001.

588696bc7f8c9dd9008b4692 1573492069 Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections