CARACTERIZAÇÃO DE AMOSTRAS DE H13 NITRETADAS A BAIXAS PRESSÕES COM DIFERENTES MISTURAS GASOSAS
CHARACTERIZATION OF H13 SAMPLES NITRIDED AT LOW PRESSURE WITH DIFFERENT GASOUS MIXTURES
Jacques, Ricardo Callegari; Reguly, Afonso
http://dx.doi.org/10.4322/tmm.00604003
Tecnol. Metal. Mater. Min., vol.6, n4, p.201-205, 2010
Resumo
A nitretação a plasma em baixas pressões e posterior deposição de filmes finos pode aumentar consideravelmente a resistência ao desgaste de matrizes de forjamento feitas de aço ABNT H13. A nitretação promove uma maior sustentação de carga e melhor adesão do filme fino, desde que não ocorra formação de uma camada branca. A realização de um processo integrado de nitretação a plasma em baixas pressões, seguido de deposição de filmes finos, traz vantagens de custo energético e de menor contaminação da amostra, sendo mais recomendável que processos convencionais. Neste contexto, foram estudadas diferentes combinações de composição gasosa, para nitretar um aço ABNT H13 em baixas pressões em uma câmara de triodo industrial IP35L/TECVAC. Os resultados indicam que é possível a não formação de camada branca para uma combinação de parâmetros de nitretação de 450°C, atmosfera de nitrogênio puro e pressão de 2 x 10–3 mbar. Essa combinação de parâmetros torna não necessária a utilização de gases de apoio como o argônio e hidrogênio, comuns em nitretações a maiores pressões.
Palavras-chave
Nitretação por plasma, Tratamento de superfície, Aço ABNT H13
Abstract
Low pressure plasma nitriding followed by thin film deposition may greatly increase the resistance to wear of forging dies made of ABNT H13. Nitriding provides the die with a higher capacity to sustain loads and a better adhesion for the film as long as there is no formation of a compound layer. The possibility of an integrated low pressure nitriding/ film deposition process has advantages such as lower energetic input and also provides lesser sample contamination. In this context, different combinations of gasous composition for the process were studied in order to nitride an ABNT H13 steel in a triode industrial IP35L/TECVAC equipment. Results show that it is possible to avoid the formation of the composite layer if a combination of 450°C, pure nitrogen atmosphere and a pressure of 2 x 10–3 mbar is used. This parameter configuration allows nitriding of the samples without the need to use support gases such as argon and hydrogen, which is a common practice in higher pressure nitridings.
Keywords
Plasma nitriding, Surface treatment, ABNT H13 steel
Referências
1 RIE, K.; BROSZEIT, E. Plasma diffusion treatment and duplex treatment – recent development and new applications.
Surface and Coatings Technology, v. 76-7, n. 2, p. 425-36, Dec. 1995.
2 YILBAS, B.; NIZAM, S. Wear behaviour of TiN coated AISI H11 and AISI M7 twist drills prior to plasma nitriding. Journal of Materials Processing Technology, v. 105, n. 3, p. 352-8, Sep. 2000.
3 BATISTA, J. C. A. et al. Micro-abrasion wear testing of PVD TiN coatings on untreated and plasma nitrided AISI H13 steel. Wear, v. 249, n. 10-1, p. 971-9, Nov. 2001.
4 BUECKEN, B. et al. Direct combination of plasma nitriding and PVD hardcoating by a continuous process. Surface & Coatings Technology, v. 68-9, p.244-8, Dec. 1994.
5 SANCHETTE, F. et al. Single cycle plasma nitriding and hard coating deposition in a cathodic arc evaporation device. Surface and Coatings Technology, v. 94-5, p. 261-7, Oct. 1997.
6 NAVINŠEK, B.; PANJAN, P.; GORENJAK, F. Improvement of hot forging manufacturing with PVD and DUPLEX coatings. Surface and Coatings Technology, v. 137, n. 2-3, p. 255-64, Mar. 2001.
7 KARAKAN, M.; ALSARAN, A.; ÇELIK, A. Effects of various gas mixtures on plasma nitriding behaviour of AISI 5140 steel. Materials Characterization, v. 49, n. 3, p. 241-6, Oct. 2002.
8 WALCOWICZ, J. On the mechanisms of diode plasma nitriding in N2-H2 mixtures under DC-pulsed substrate biasing. Surface and Coatings Technology, v. 174-5, p. 1211-9, Sep.-Oct. 2003.
9 HIROHATA, Y.; TSUCHIYA, N.; HINO, T. Effect of mixing of hydrogen into nitrogen plasma. Applied Surface Science, v. 169-70, p. 612-6, Jan. 2001.
10 EGERT, P. et al. Decarburization during plasma nitriding. Surface and Coatings Technology, v. 122, n. 1, p.33-8, Dec. 1999.
11 KOSTOV, K.G.; UEDA, M.; LEPIENSKY, M.; SOARES JUNIOR, P.C.; GOMES, G.F.; SILVA, M.M.; REUTHER, H. Surface modification of metal alloys by plasma immersion íon implantation and subsequent plasma nitriding. Surface & Coatings Technology, v. 186, n. 1-2, p. 204-8 Ago. 2004.
12 SHARMA, M.K.; SAIKIA, B.K.; BUJARBARUA, S. Optical emission spectroscopy of DC pulsed plasmas used for steel nitriding. Surface & Coatings Technology, v. 203, n. 3-4, p. 229-33, Nov. 2008.
13 FANCEY, K.S. An investigation into dissociative mechanisms in nitrogenous glow discharges by optical emission spectroscopy. Vacuum, v. 46, n. 7, p. 695-700, Jul. 1995.
14 KIECKOW, F.; KWIETNIEWSKI, C.; TENTARDINI, E.; REGULY, A.; BAUMVOL, I. XPS and ion scattering studies on compound formation and interfacial mixing in TiN/Ti nanolayers on plasma nitrided tool steel. Surface and Coatings Technology, v. 201, n. 6, p. 3066-73, Dec. 2006.
2 YILBAS, B.; NIZAM, S. Wear behaviour of TiN coated AISI H11 and AISI M7 twist drills prior to plasma nitriding. Journal of Materials Processing Technology, v. 105, n. 3, p. 352-8, Sep. 2000.
3 BATISTA, J. C. A. et al. Micro-abrasion wear testing of PVD TiN coatings on untreated and plasma nitrided AISI H13 steel. Wear, v. 249, n. 10-1, p. 971-9, Nov. 2001.
4 BUECKEN, B. et al. Direct combination of plasma nitriding and PVD hardcoating by a continuous process. Surface & Coatings Technology, v. 68-9, p.244-8, Dec. 1994.
5 SANCHETTE, F. et al. Single cycle plasma nitriding and hard coating deposition in a cathodic arc evaporation device. Surface and Coatings Technology, v. 94-5, p. 261-7, Oct. 1997.
6 NAVINŠEK, B.; PANJAN, P.; GORENJAK, F. Improvement of hot forging manufacturing with PVD and DUPLEX coatings. Surface and Coatings Technology, v. 137, n. 2-3, p. 255-64, Mar. 2001.
7 KARAKAN, M.; ALSARAN, A.; ÇELIK, A. Effects of various gas mixtures on plasma nitriding behaviour of AISI 5140 steel. Materials Characterization, v. 49, n. 3, p. 241-6, Oct. 2002.
8 WALCOWICZ, J. On the mechanisms of diode plasma nitriding in N2-H2 mixtures under DC-pulsed substrate biasing. Surface and Coatings Technology, v. 174-5, p. 1211-9, Sep.-Oct. 2003.
9 HIROHATA, Y.; TSUCHIYA, N.; HINO, T. Effect of mixing of hydrogen into nitrogen plasma. Applied Surface Science, v. 169-70, p. 612-6, Jan. 2001.
10 EGERT, P. et al. Decarburization during plasma nitriding. Surface and Coatings Technology, v. 122, n. 1, p.33-8, Dec. 1999.
11 KOSTOV, K.G.; UEDA, M.; LEPIENSKY, M.; SOARES JUNIOR, P.C.; GOMES, G.F.; SILVA, M.M.; REUTHER, H. Surface modification of metal alloys by plasma immersion íon implantation and subsequent plasma nitriding. Surface & Coatings Technology, v. 186, n. 1-2, p. 204-8 Ago. 2004.
12 SHARMA, M.K.; SAIKIA, B.K.; BUJARBARUA, S. Optical emission spectroscopy of DC pulsed plasmas used for steel nitriding. Surface & Coatings Technology, v. 203, n. 3-4, p. 229-33, Nov. 2008.
13 FANCEY, K.S. An investigation into dissociative mechanisms in nitrogenous glow discharges by optical emission spectroscopy. Vacuum, v. 46, n. 7, p. 695-700, Jul. 1995.
14 KIECKOW, F.; KWIETNIEWSKI, C.; TENTARDINI, E.; REGULY, A.; BAUMVOL, I. XPS and ion scattering studies on compound formation and interfacial mixing in TiN/Ti nanolayers on plasma nitrided tool steel. Surface and Coatings Technology, v. 201, n. 6, p. 3066-73, Dec. 2006.