EFFECT OF IRON ON ENERGY CONSUMPTION AND CURRENT EFFICIENCY OF ZINC ELECTROWINNING FROM SULFACE SOLUTIONS
EFEITO DO FERRO NO CONSUMO DE ENERGIA E EFECIÊNCIA DE CORRENTE DA ELETRÓLISE DO ZINCO A PARTIR DE SOLUÇÕES
Lins, Vanessa de Freitas C.; Abelha, Renata; Castro, Maria das Mercês R. de; Souza, Maria Maciel D. de; Moraes, Leticia Lanza de; Araújo, Carlos Roberto; Matencio, Tulio
http://dx.doi.org/10.4322/tmm.00701011
Tecnol. Metal. Mater. Min., vol.7, n1-2, p.61-66, 2010
Abstract
Electrolytic zinc used in galvanizing processes is obtained using zinc electrowinning from sulfate solutions. The presence of impurities in the electrolyte is a major problem for the zinc electrowinning industry. The impurities on zinc electrolysis can reduce the current efficiency and increase the energy consumption. In this work, the effect of iron on the zinc electrodeposition using galvanostatic deposition and cyclic voltammetry is studied. Contents of 5, 10, and 15 mg.L-1 of iron were added in the electrolyte of zinc sulfate and in an industrial acid electrolyte. Using the industrial electrolyte, iron addition is detrimental to the zinc electrowinning, increasing the energy consumption and decreasing the current efficiency.
Keywords
Electrolysis, Energy consumption, Electrolytic zinc
Resumo
O zinco eletrolítico usado nos processos de galvanização é obtido através da eletrólise do zinco a partir de soluções sulfatadas. A presença de impurezas no eletrólito é o maior problema para a eletrólise do zinco industrial. As impurezas na eletrólise do zinco podem reduzir a eficiência de corrente e aumentar o consumo de energia. Neste trabalho é estudado o efeito do ferro na eletrodeposição do zinco, usando deposição galvanostática e voltametria cíclica. Foram adicionadas ao eletrólito de sulfato de zinco e a um eletrólito ácido industrial 5, 10 e 15 mg.L-1 de ferro. No eletrólito ácido industrial a adição de ferro é prejudicial para a eletrólise do zinco, aumentando o consumo de energia e diminuindo a eficiência de corrente.
Palavras-chave
Eletrólise, Consumo de energia, Zinco eletrolítico
References
1 LINS, V. F. C.; PARANHOS, R. M. V.; ALVARENGA, E. A. Behavior of the electrogalvanized and painted carbon
steel and low Cu and Cr carbon steel during cyclic and field corrosion tests. Journal of Materials Science, v. 42, n. 13,
p. 5094-104, 2007.
2 SHARIFI, B. et al. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder. Hydrometallurgy, v. 99, p. 72-6, 2009.
3 MOJTAHEDI, M. et al. Effect of electrolysis conditions of zinc powder production on zinc-silver oxide battery operation. Energy Conversion and Management, v. 52, n. 4, p. 1876-80, Apr. 2011.
4 GÜRMEN, S.; EMRE, M. A laboratory-scale investigation of alkaline zinc electrowinning. Minerals Engineering, v. 16, n. 6, p. 559-62, June 2003.
5 MURESAN L. et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy, v. 43, n. 1-3, p. 345-54, Nov. 1996.
6 FOSNACHT, D. R.; O’KEEFE, T. Evaluation of zinc electrolytes containing certain impurities and additive by cyclic voltammetry. Journal of Applied Electrochemistry, v. 10, n. 4, p. 495-504, 1980.
7 IVANOV, I.; STEFANOV, Y. Electroextraction of zinc from sulphate electrolytes containing antimony ions and hydroxyethylated- butyne-2-diol-1,4: Part 3. The influence of manganese ions and a divided cell. Hydrometallurgy, v. 64, n. 3, p. 181-6, June 2002.
8 TRIPATHY, B. C.; DAS, S. C.; MISRA, V. N. Effect of antimony(III) on the electrocrystallisation of zinc from sulphate solutions containing SLS. Hydrometallurgy, v. 69, n. 1-3, p. 81-8, Apr. 2003.
9 ICHINO, R.; CACHET, C.; WIART, R. Influence of Ge4+ and Pb2+ ions on the kinetics of zinc electrodeposition in acidic sulphate electrolyte. Journal of Applied Electrochemistry, v. 25, n. 6, p. 556-64, 1995.
10 SABA, A. E.; ELSHERIEF, A. E. Continuous electrowinning of zinc. Hydrometallurgy, v. 54, n. 2-3, p. 91-106, Jan. 2000.
11 VASCONCELOS, D. C. L. et al. Influence of process parameters on the morphological evolution and fractal dimension of sol–gel colloidal silica particles. Materials Science and Engineering A, v. 334, n.1-2, p. 53-8, Sep. 2002.
2 SHARIFI, B. et al. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder. Hydrometallurgy, v. 99, p. 72-6, 2009.
3 MOJTAHEDI, M. et al. Effect of electrolysis conditions of zinc powder production on zinc-silver oxide battery operation. Energy Conversion and Management, v. 52, n. 4, p. 1876-80, Apr. 2011.
4 GÜRMEN, S.; EMRE, M. A laboratory-scale investigation of alkaline zinc electrowinning. Minerals Engineering, v. 16, n. 6, p. 559-62, June 2003.
5 MURESAN L. et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy, v. 43, n. 1-3, p. 345-54, Nov. 1996.
6 FOSNACHT, D. R.; O’KEEFE, T. Evaluation of zinc electrolytes containing certain impurities and additive by cyclic voltammetry. Journal of Applied Electrochemistry, v. 10, n. 4, p. 495-504, 1980.
7 IVANOV, I.; STEFANOV, Y. Electroextraction of zinc from sulphate electrolytes containing antimony ions and hydroxyethylated- butyne-2-diol-1,4: Part 3. The influence of manganese ions and a divided cell. Hydrometallurgy, v. 64, n. 3, p. 181-6, June 2002.
8 TRIPATHY, B. C.; DAS, S. C.; MISRA, V. N. Effect of antimony(III) on the electrocrystallisation of zinc from sulphate solutions containing SLS. Hydrometallurgy, v. 69, n. 1-3, p. 81-8, Apr. 2003.
9 ICHINO, R.; CACHET, C.; WIART, R. Influence of Ge4+ and Pb2+ ions on the kinetics of zinc electrodeposition in acidic sulphate electrolyte. Journal of Applied Electrochemistry, v. 25, n. 6, p. 556-64, 1995.
10 SABA, A. E.; ELSHERIEF, A. E. Continuous electrowinning of zinc. Hydrometallurgy, v. 54, n. 2-3, p. 91-106, Jan. 2000.
11 VASCONCELOS, D. C. L. et al. Influence of process parameters on the morphological evolution and fractal dimension of sol–gel colloidal silica particles. Materials Science and Engineering A, v. 334, n.1-2, p. 53-8, Sep. 2002.