ESTUDO TRIBOLÓGICO DE REVESTIMENTOS DE DLC COM GASES REFRIGERANTES HFC134A E HC600A
TRIBOLOGICAL BEHAVIOR OF DLC COATINGS, WITH REFRIGERANT GASES HFC134A AND HC600A
Silverio, Marcio; Binder, Roberto; Mello, José Daniel Biasoli
http://dx.doi.org/10.4322/tmm.2011.011
Tecnol. Metal. Mater. Min., vol.8, n1, p.64-72, 2011
Resumo
O presente trabalho pretende estudar o efeito dos gases refrigerantes HFC134a e HC600a na tribologia de componentes revestidos com DLC, Diamond-like Carbon, bem como estabelecer uma metodologia de avaliação tribológica para os mesmos. Os ensaios tribológicos foram realizados em uma plataforma do tipo esfera-plano, de movimento recíproco com o registro do coeficiente de atrito e resistência de contato. Como contra-corpo foram utilizados esferas de aço SAE52100 e WC-Co. A aplicação da forca normal se deu de forma incremental em intervalos preestabelecidos de tempo estabelecendo uma relatividade entre diferentes corpos de prova. Os corpos de prova foram confeccionados em aço SAE 1020 revestidos com DLC obtidos por fornecedor comercial. A caracterização das amostras foi realizada via interferômetria óptica e Microscopia Eletrônica de Varrredura – MEV com a utilização de análise química via espectrometro de energia dispersiva – EDS. Durante a execução dos ensaios verificou-se forte influência das atmosferas utilizadas formando uma tribocamada na interface de contato entre corpo e contra-corpo. Tal influência induziu perturbações no coeficiente de atrito e resistência de contato. A análise química desta tribocamada indicou elementos oriundos da degradação dos gases refrigerantes associados à presença de oxigênio.
Palavras-chave
Desgaste, Revestimentos, Coeficiente de atrito, Gases
Abstract
This work aims to study the effect of refrigerant gases HFC134a and HC600a in components coated with DLC, Diamond-like Carbon, as well as is to establish a methodology for tribology evaluating of them. The tribological tests were conducted on a reciprocal motion. Balls of SAE 52100 steel and WC-Co were used as counter-body. The load was applied in a incremental way. The samples were prepared in SAE 1020 steel coated with DLC obtained from commercial suppliers. The characterization of samples was performed by optical interferometry and Scanning Electron Microscopy - SEM. It was verified a strong influence of the atmosphere through the in formation of a tribolayer at the interface between body and counter body. This influence showed disturbances in the coefficient of friction and contact resistance. Chemical analysis indicated that the tribolayer was formed by elements originated from the degradation of the refrigerants gases associated with of oxygen.
Keywords
Wear, Coatings, DLC, Refrigerant gases
Referências
1 IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. In: ASSESSMENT REPORT, 4., 2007, Valencia, Spain. Geneva: IPCC, 2007. Plenary 27.
2 UNEP - UNITED NATIONS ENVIRONMENT PROGRAMME. Montreal protocol on substances that deplete the ozone layer. New York, 1987.
3 ERDEMIR, A. Design criteria for super lubricity in carbon films and related microstructures. Tribology International, v. 37, n. 7, p. 577-583, July 2004.
4 HAYWARD, I. P.; FIELD, J.E. Friction and wear of diamond. In: INTERNATIONAL CONFERENCE ON TRIBOLOGY, 1987, London. 50 Years on. [S.l.]: Institute of Mechanical Engineers, 1987. p. 205-9.
5 MIYOSHI, K. et al. Friction and wear of plasma-deposited diamond films. Journal of Applied Physics, v. 74, n. 7, p. 4446‑50, Oct. 1993. http://dx.doi.org/10.1063/1.354386
6 DUGGER, D.; PEEBLES, E.; POPE, L. E. Counterface material and ambient atmosphere: role in the tribological performance of diamond films. In: CHUNG, Y.-W.; HOMOLO, A. M.; STREET, G. B. (Eds.). Surface science investigations in tribology, experimental approaches. Washington, D.C: American Chemical Society, 1992. p. 72-102. (ACS Symposium Series, 485).
7 CHANDRASEKA, S.; BHUSHAN, B. The role of environment in the friction of diamond for magnetic recording head applications. Wear, v. 153, n. 1, p. 79-89, Mar. 1992. http://dx.doi.org/10.1016/0043-1648(92)90262-7
8 MIYAKE, S. et al. Macro- and micro-tribological properties of polished CVD diamond films and trial processing diamond. IEICE TRANSACTIONS on Electronics, v. E78-C, n. 2, p. 180-5, Fev. 1995.
9 SMENTKOWSKI, V. S.; YATES JR., J. T. Fluoroalkyl iodide photodecomposition on diamond (100): an efficient route to the fluorination of diamond surfaces. Materials Research Society Symposia, v. 416, p. 293-8, 1996.
10 MOLIAN, P. A.; JANVRIN, B.; MOLIAN, A. M. Laser chemical vapor deposition of fluorinated diamond thin films for solid lubrication. Wear, v. 165, n. 2, p. 133-40, June 1993. http://dx.doi.org/10.1016/0043-1648(93)90328-J
11 MELLO, J. D. B.; BINDER, R. A methodology to determine surface durability in multifunctional coatings applied to soft substrates. Tribology International, v. 39, n. 8, p. 769-773, Aug. 2006. http://dx.doi.org/10.1016/j.triboint.2005.07.015
2 UNEP - UNITED NATIONS ENVIRONMENT PROGRAMME. Montreal protocol on substances that deplete the ozone layer. New York, 1987.
3 ERDEMIR, A. Design criteria for super lubricity in carbon films and related microstructures. Tribology International, v. 37, n. 7, p. 577-583, July 2004.
4 HAYWARD, I. P.; FIELD, J.E. Friction and wear of diamond. In: INTERNATIONAL CONFERENCE ON TRIBOLOGY, 1987, London. 50 Years on. [S.l.]: Institute of Mechanical Engineers, 1987. p. 205-9.
5 MIYOSHI, K. et al. Friction and wear of plasma-deposited diamond films. Journal of Applied Physics, v. 74, n. 7, p. 4446‑50, Oct. 1993. http://dx.doi.org/10.1063/1.354386
6 DUGGER, D.; PEEBLES, E.; POPE, L. E. Counterface material and ambient atmosphere: role in the tribological performance of diamond films. In: CHUNG, Y.-W.; HOMOLO, A. M.; STREET, G. B. (Eds.). Surface science investigations in tribology, experimental approaches. Washington, D.C: American Chemical Society, 1992. p. 72-102. (ACS Symposium Series, 485).
7 CHANDRASEKA, S.; BHUSHAN, B. The role of environment in the friction of diamond for magnetic recording head applications. Wear, v. 153, n. 1, p. 79-89, Mar. 1992. http://dx.doi.org/10.1016/0043-1648(92)90262-7
8 MIYAKE, S. et al. Macro- and micro-tribological properties of polished CVD diamond films and trial processing diamond. IEICE TRANSACTIONS on Electronics, v. E78-C, n. 2, p. 180-5, Fev. 1995.
9 SMENTKOWSKI, V. S.; YATES JR., J. T. Fluoroalkyl iodide photodecomposition on diamond (100): an efficient route to the fluorination of diamond surfaces. Materials Research Society Symposia, v. 416, p. 293-8, 1996.
10 MOLIAN, P. A.; JANVRIN, B.; MOLIAN, A. M. Laser chemical vapor deposition of fluorinated diamond thin films for solid lubrication. Wear, v. 165, n. 2, p. 133-40, June 1993. http://dx.doi.org/10.1016/0043-1648(93)90328-J
11 MELLO, J. D. B.; BINDER, R. A methodology to determine surface durability in multifunctional coatings applied to soft substrates. Tribology International, v. 39, n. 8, p. 769-773, Aug. 2006. http://dx.doi.org/10.1016/j.triboint.2005.07.015