TRATAMENTO CRIOGÊNICO E DE ALÍVIO DE TENSÕES EM UM AÇO AISI D2
CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL
Farina, Paula Fernanda da S.; Farina, Alexandre Bellegard; Barbosa, Celso Antonio; Goldenstein, Hélio
http://dx.doi.org/10.4322/tmm.2012.021
Tecnol. Metal. Mater. Min., vol.9, n2, p.140-147, 2012
Resumo
Estuda-se efeito do tratamento criogênico em um aço AISI D2 para trabalho a frio com a técnica de difração de raios X utilizando luz síncrotron. Este trabalho tem por objetivo verificar os efeitos: i) do tempo de permanência à temperatura criogênica (3 horas, 10 horas e 30 horas); ii) da temperatura criogênica (–80°C e –196°C); iii) do alívio de tensões (130°C) antes do tratamento criogênico; iv) do duplo revenimento (520°C/2 h cada) após a menor temperatura criogênica (–196°C) e o máximo tempo de permanência a esta temperatura (30 horas), com e sem o alívio de tensões. As difrações de raios X foram realizadas na linha de luz D10B-XPD do Laboratório Nacional de Luz Síncrotron e o tratamento dos padrões experimentais foi realizado por refinamento de Rietveld utilizando o programa TOPAS Academic em conjunto com cartões ICCD-PDF, da base de 2006, com as estruturas da austenita, martensita e carbonetos M7C3 e M2C. As amostras após revenimento foram caracterizadas por MEV e MEV-FEG. Determinam-se as frações de austenita retida, as mudanças no reticulado cristalino da martensita e da austenita e as frações volumétricas dos carbonetos.
Palavras-chave
Tratamento criogênico, Aço-ferramenta, Difração de raios X, Luz síncrotron
Abstract
The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i) time at cryogenic temperatures (3, 10 and 30 hours); ii) cryogenic temperatures (–80°C and –196°C); iii) stress relief heat treatment (130°C) before cryogenic treatments; iv) effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and without previous stress relief. X-ray diffraction experiments were conducted at the line D10B-XPD of the Laboratório Nacional de Luz Síncrotron and the experimental results were treated using Rietveld refining, with TOPAS Academic in conjunction with cards from the ICCD-PDF 2006 database for austenite, martensite and carbides M7C3 and M2C. Tempered samples were characterized using SEM and SEM-FEG. Volume fraction of retained austenite and carbides, as well as changes in the crystal lattices of martensite and austenite are obtained from the X-ray experiments.
Keywords
Cryogenic treatment, Tool steel, X-ray diffraction, Synchrotron light
Referências
1 BARRON, R. F. Cryogenic treatment of metals to improve wear resistance. Cryogenics, v. 22, n. 8, p. 409-13, Ago. 1982.
2 MOORE, K.; COLLINS, D. N. Cryogenic treatment of three heat-treated tool steels. Key Engineering Materials, v. 86-7, p. 47-54, 1993. http://dx.doi.org/10.4028/www.scientific.net/KEM.86-87.47
3 MENG, F.; TAGASHIRA, K.; SOHMA, H. Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel. Scripta Metallurgica e Materialia, v. 31, n. 7, p. 865-8, 1994. http://dx.doi.org/10.1016/0956‑ 716X(94)90493-6
4 YUN, D.; XIAOPING, L.; HONGSHEN., X. Deep cryogenic treatment of high speed steel and its mechanism. Heat Treatment of Metals, v. 3, p. 55-9, 1998.
5 HUANG, J. Y. et al. Microstructure of cryogenic treated M2 tool steel. Materials Science and Engineering A, v. 339, n. 1-2, p. 241-4, Jan. 2003. http://dx.doi.org/10.1016/S0921-5093(02)00165-X
6 OPPENKOWSKI, A.; WEBER, S.; THEISEN, W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. Journal of Materials Processing Technology, v. 210, n. 14, p. 1949-55, Nov. 2010. http://dx.doi.org/10.1016/j.jmatprotec.2010.07.007
7 MENG, F. et al. Role of eta carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1.4C tool steel by cryogenic treatment. ISIJ International, v. 34, n. 2, p. 205-10, Feb. 1994. http://dx.doi.org/10.2355/ isijinternational.34.205
8 FARINA, P. F. S.; BARBOSA, C. A.; GOLDENSTEIN, H. Microstructural characterization of an AISI D2 tool steel submitted to cryogenic treatment. In: IFHTSE CONGRESS, 18., 2010, Rio de Janeiro. Proceedings... São Paulo: ABM, 2010. p. 5417-26.
9 TAYLOR, K. A.; COHEN, M. Aging of ferrous martensite. Progress in Materials Science, v. 36, p. 225-72, 1992. http:// dx.doi.org/10.1016/0079-6425(92)90010-5
10 SPEER, J. et al. Carbon partitioning into austenite after martensite transformation. Acta Materialia, v. 51, n. 9, p. 2611-22, May 2003. http://dx.doi.org/10.1016/S1359-6454(03)00059-4
11 NISHIYAMA, Z. Martensitic transformation. New York: Academic Press, 1971.
12 SILVA, P. F. et al. Efeito do alívio de tensões na estabilização da austenita antes do tratamento criogênico em um aço AISI D2. In: Congresso Anual da ABM, 64., 2009. Belo Horizonte. Anais… São Paulo: ABM, 2009.
13 FARINA, P. F. S. et al. Effect of stress relief on the amount of retained austenite after cryogenic treatment and on the wear resistance of a tool steel. In: International Conference on Advanced Materials, 11., 2009. Rio de Janeiro. Rio de Janeiro: [s.n.], 2009.
2 MOORE, K.; COLLINS, D. N. Cryogenic treatment of three heat-treated tool steels. Key Engineering Materials, v. 86-7, p. 47-54, 1993. http://dx.doi.org/10.4028/www.scientific.net/KEM.86-87.47
3 MENG, F.; TAGASHIRA, K.; SOHMA, H. Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel. Scripta Metallurgica e Materialia, v. 31, n. 7, p. 865-8, 1994. http://dx.doi.org/10.1016/0956‑ 716X(94)90493-6
4 YUN, D.; XIAOPING, L.; HONGSHEN., X. Deep cryogenic treatment of high speed steel and its mechanism. Heat Treatment of Metals, v. 3, p. 55-9, 1998.
5 HUANG, J. Y. et al. Microstructure of cryogenic treated M2 tool steel. Materials Science and Engineering A, v. 339, n. 1-2, p. 241-4, Jan. 2003. http://dx.doi.org/10.1016/S0921-5093(02)00165-X
6 OPPENKOWSKI, A.; WEBER, S.; THEISEN, W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. Journal of Materials Processing Technology, v. 210, n. 14, p. 1949-55, Nov. 2010. http://dx.doi.org/10.1016/j.jmatprotec.2010.07.007
7 MENG, F. et al. Role of eta carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1.4C tool steel by cryogenic treatment. ISIJ International, v. 34, n. 2, p. 205-10, Feb. 1994. http://dx.doi.org/10.2355/ isijinternational.34.205
8 FARINA, P. F. S.; BARBOSA, C. A.; GOLDENSTEIN, H. Microstructural characterization of an AISI D2 tool steel submitted to cryogenic treatment. In: IFHTSE CONGRESS, 18., 2010, Rio de Janeiro. Proceedings... São Paulo: ABM, 2010. p. 5417-26.
9 TAYLOR, K. A.; COHEN, M. Aging of ferrous martensite. Progress in Materials Science, v. 36, p. 225-72, 1992. http:// dx.doi.org/10.1016/0079-6425(92)90010-5
10 SPEER, J. et al. Carbon partitioning into austenite after martensite transformation. Acta Materialia, v. 51, n. 9, p. 2611-22, May 2003. http://dx.doi.org/10.1016/S1359-6454(03)00059-4
11 NISHIYAMA, Z. Martensitic transformation. New York: Academic Press, 1971.
12 SILVA, P. F. et al. Efeito do alívio de tensões na estabilização da austenita antes do tratamento criogênico em um aço AISI D2. In: Congresso Anual da ABM, 64., 2009. Belo Horizonte. Anais… São Paulo: ABM, 2009.
13 FARINA, P. F. S. et al. Effect of stress relief on the amount of retained austenite after cryogenic treatment and on the wear resistance of a tool steel. In: International Conference on Advanced Materials, 11., 2009. Rio de Janeiro. Rio de Janeiro: [s.n.], 2009.