Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.2013.003
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ESTUDO NUMÉRICO DA INFLUÊNCIA DE PROPRIEDADES DE AMOLECIMENTO E FUSÃO NA CINÉTICA DE FORMAÇÃO DE (CAFE2O4-CA2FE2O5) NA SINTERIZAÇÃO DE MINÉRIO DE FERRO

NUMERICAL EVALUATION OF THE EFFECTS OF SOFT-MELTING PROPERTIES ON THE KINETIC OF (CAFE2O4-CA2FE2O5) FORMATION IN THE IRON ORE SINTERING PROCESS

Castro, José Adilson de; França, Alexandre Bôscaro; Guilherme, Vagner Silva; Sazaki, Yasushi

Downloads: 2
Views: 1047

Resumo

O presente trabalho apresenta um modelo matemático capaz de prever a influência das propriedades de amolecimento e fusão da mistura de matérias primas na cinética de formação dos constituintes cálcio ferrita e dicálcio ferrita na sinterização de minério de ferro. O modelo é baseado na solução simultânea das equações de transporte de Momentum, energia e espécies químicas formuladas para sistemas multifásico e multicomponente, acoplado à cinética de reações químicas e transformações de fases que ocorrem no interior da esteira de sinterização. A solução numérica é obtida utilizando-se o método de volumes finitos validado com resultados de monitoramento de uma planta industrial de sinterização. Os resultados indicam que as temperaturas de início de amolecimento, contração volumétrica e intervalo de fusão são os principais parâmetros a serem controlados visando obtenção de formação de fase líquida que confere resistência mecânica e redutibilidade adequadas ao sínter. Neste estudo confirma-se que matérias primas com alto ponto de amolecimento e fusão combinado com alta contração volumétrica e grande intervalo de temperatura da zona pastosa podem diminuir até 20% o volume de fase líquida formada e, consequentemente, diminuir em mais de 30% a formação de cálcio ferritas o que deterioraria consideravelmente as propriedades finais do sínter.

Palavras-chave

Sinterização, Minério de ferro, Modelagem matemática, Cinética de formação

Abstract

This paper presents a mathematical model able to predict the influence of soft-melting properties of the blend of raw materials used in the iron ore sintering process in the kinetic formation of calcium ferrite and di-calcium ferrite constituents. The model is based on the simultaneous solution of transport equations of Momentum, energy and chemical species in multiphase multicomponent systems coupled with the chemical reactions kinetics and phase transformations that occur within the sinter bed. The numerical solution is obtained using the finite volume method and the model is validated using monitoring data from an industrial scale sintering plant. After validation, the model was used to predict processing conditions using raw materials with different soft-melting properties. Results indicate that the temperatures of starting soft-melting, shrinkage and melting range are the main parameters to be controlled in order to attain liquid phases formation responsible to confer good mechanical and reducibility properties for the sinter product. In this study was found that raw materials with high soft-melting temperature and wilder temperature of mushy zone could decrease up to 30% the calcium ferrites formation and hence deteriorates the metallurgical properties of the sinter.

Keywords

Sintering, Iron ore, Mathematical modeling, Kinetic formation

Referências

1 CUMMING, M. J.; THURLBY, J. A.Developments in modeling and simulation of iron ore sintering. Ironmaking and Steelmaking, v. 17, n. 4 , p. 245-254, April 1990.

2 NATH, N. K.; SILVA, A. J.; CHAKRABORTI, N. Dynamic process modeling of iron ore sintering. Steel Research, v. 68, n. 7 , p. 285-292, July 1997.

3 YAMAOKA, H.; KAWAGUCHI, T. Development of a 3-D sinter process mathematical simulation model. ISIJ International, v. 45, n. 4 , p.522-531, Mar. 2005. http://dx.doi.org/10.2355/isijinternational.45.522

4 CASTRO, J. A. et al. Modelo matematico tridimensional multifasico da geração de dioxinas no leito de sinterização. Tecnologia em Metalurgia e Materiais , v. 2, n. 2, p. 45-49, jul.-set. 2005. http://dx.doi.org/10.4322/tmm.00202009

5 MITTERLEHNER, J. et al. Modeling and simulation of heat front propagation in the iron ore sintering process. ISIJ International, v. 44, n. 1, p. 11-20, Jan. 2004. http://dx.doi.org/10.2355/isijinternational.44.11

6 OYAMA, N. et al. Development of secondary-fuel injection technology for energy reduction in the iron ore sintering process. ISIJ International, v. 51, n. 7, p. 913-921, Jul. 2011. http://dx.doi.org/10.2355/isijinternational.51.913

7 KANG, H. et al. Influence of oxygen suply in iron ore sintering process. ISIJ International, v. 51, n. 7, p. 1065-1071, Jul. 2011. http://dx.doi.org/10.2355/isijinternational.51.1065

8 CASTRO, J. A.; NOGAMI, H.; YAGI J.Three dimensional multiphase mathematical modeling of the blast furnace based on multifluid theory. ISIJ International, v. 42, n. 1, p. 44-52, Jan. 2002. http://dx.doi.org/10.2355/ isijinternational.42.44

9 AUSTIN, P. R.; NOGAMI, H.; YAGI J. A Mathematical model for blast furnace reaction analysis based on the four fluid model. ISIJ International, v. 37, n. 8, p. 748-755, Aug. 1997. http://dx.doi.org/10.2355/isijinternational.37.748

10 OMORI, Y. The blast furnace phenomena and modeling. London: Elsevier Applied Science, 1987.

11 HOU, P. et al. Aplication of intraparticle combustion model for iron ore sinter bed. Materials Science and Applications, v. 2, n. 4, p. 370-380, April 2011. http://dx.doi.org/10.4236/msa.2011.25048

12 CASTRO, J. A. et al. A six-phases 3-D model to study simultaneous injection of high rates of pulverized coal and charcoal into the blast furnace with oxygen enrichment. ISIJ International, v. 51, n. 5, p. 748-758, May 2011. http:// dx.doi.org/10.2355/isijinternational.51.748

13 NOGUEIRA, P. F.; FRUEHAN, R. J. Blast furnace burden softening and melting phenomena. Part III: melt onset and initial microstructural transformations in pellets. Metallurgical and Materials Transactions B, v. 37, n. 8, p. 551-558, Aug. 2006.

14 NOGUEIRA, P. F.; CASTRO, A. A.; PIMENTA, H. P. High temperature properties of sinters and pellets produced with brazilian ores. In: INTERNATIONAL CONGRESS ON THE SCIENCE AND TECHNOLOGY OF IRONMAKING, 4., 2006, Osaka. Proceedings... Osaka: Iron and Steel Institute of Japan, 2006. v. 1, p. 671-674.

15 NANDY, S. et al.Assessment of blast furnace behaviour through softening-melting test. Ironmaking and Steelmaking, v. 33, n. 2, p. 111-119, Feb. 2006. http://dx.doi.org/10.1179/174328106X94744

16 UMADEVI, T. et al. Influence of iron fines feed size on microstructure, productivity and quality of iron ore sinter. ISIJ International, v. 51, n. 6,, p. 922-929, Jun. 2011. http://dx.doi.org/10.2355/isijinternational.51.922

17 LV, X. et al. Behavior of liquid phase formation during iron ores sintering. ISIJ International, v. 51, n. 5, p. 722-727, May 2011. http://dx.doi.org/10.2355/isijinternational.51.722

18 YGUCHI, K. TANAKA, T. and SATO, T.Reaction Behavior of Dolomite Accompained with Formation of Magnetite Solid Solution in Iron Ore sintering Process, ISIJ International, v. 47, n. 5, p. 669- 678, May 2007. http://dx.doi. org/10.2355/isijinternational.47.669

19 MELAEN, M. C. Calculation of fluid flows with staggered and nonstaggered curvelinear nonorthogonal grids-the theory. Numerical Heat Transfer B, v. 21, n. 1, p. 1-19, Jan. 1992. http://dx.doi.org/10.1080/10407799208944919

588696af7f8c9dd9008b4656 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections