DESENVOLVIMENTO POR SIMULAÇÃO COMPUTACIONAL E ANÁLISE DO DESEMPENHO REAL DE UMA MATRIZ PARA EXTRUSÃO EM CANAL ANGULAR
DEVELOPMENT BY COMPUTATIONAL SIMULATION AND PERFORMANCE ANALYSIS OF AN EQUAL CHANNEL ANGULAR PRESSING DIE
Springer, Phillip; Rubert, José Benaque; Sordi, Vitor Luiz; Ferrante, Maurizio
http://dx.doi.org/10.4322/tmm.2013.017
Tecnol. Metal. Mater. Min., vol.10, n2, p.120-127, 2013
Resumo
Os parâmetros geométricos críticos de uma matriz de Extrusão em Canal Angular (ECA) foram otimizados empregando o software Deform. Em base ao resultados da simulação foi construída uma matriz ECA, dedicada ao processamento de placas de Al AA1050 com 7 mm de espessura. Do software foram obtidas as forças de prensagem e a distribuição da deformação equivalente na placa, após um e quatro passes. Essas forças simuladas foram comparadas com as reais, obtidas das curvas força versus deslocamento do punção, enquanto a distribuição da deformação equivalente foi validada por medidas de indentação Vickers. Ensaios de tração e a observação microestrutural das placas processadas mostram que o desempenho da matriz é amplamente satisfatório.
Palavras-chave
Método de elementos finitos, Extrusão angular em canais, Deformação
Abstract
Critical geometric parameters of an Equal Channel Angular Pressing (ECAP) die suitable to plate processing were optimized by making use of the DEFORM™ software. Following the simulation a die was manufactured and employed in the processing of 7 mm thick Al AA 1050 plates. Software output included the pressing forces and the equivalent deformation distribution within the plates, after one and four ECAP passes. Calculated pressing forces against the punch displacement were compared with the actual forces, whilst the deformation distribution is validated by Vickers microhardness measurements. From tensile tests and microstructural observation of the processed plates the die performance was found quite satisfactory
Keywords
Finite elements method, Equal channel angular pressing die, Deformation
Referências
1 Valiev R, Langdon, TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progr Mater Sci. 2006;51:881-981. http://dx.doi.org/10.1016/j.pmatsci.2006.02.003
2 Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater. 1996;35:143-146. http://dx.doi.org/10.1016/1359- 6462(96)00107-8
3 Sidor J, Miroux A, Petrov R, Kestens L. Microstructural and crystallographic effects of conventional and asymmetric rolling processes. Acta Mater. 2008;56:2495-2507. http://dx.doi.org/10.1016/j.actamat.2008.01.042
4 Kliauga A, Ferrante M, Bolmaro RE. The evolution of texture in AA 1050 alloy deformed by Equal-Channel Angular Pressing. Mater Sci. Forum. 2011;667-669:577-582. http://dx.doi.org/10.4028/www.scientific.net/MSF.667-669.577
5 Kamachi M, Furukawa M, Horita Z, Langdon TG. Equal channel angular pressing using plate samples. Mater Sci Eng A-Struct. 2004;361:258-266. http://dx.doi.org/10.1016/S0921-5093(03)00522-7
6 Ferrasse S, Segal VM, Alford F. Effect of additional processing on texture evolution of Al10.5%Cu processed by equal channel angular extrusion (ECAE). Mater Sci Eng A-Struct. 2004;372:44-55. http://dx.doi.org/10.1016/j. msea.2003.09.076
7 Olejnik L, Rosochowski M, Richert M. Incremental ECAP of plates. Mater Sci Forum. 2008;584-586:108-113. http:// dx.doi.org/10.4028/www.scientific.net/MSF.584-586.108
8 ASTM International. ASTM E8/E8M-1: Standard test methods for tension testing of metallic materials. West Conshohocken, PA; 2011.
9 Voce E. The relationship between stress and strain for homogeneous deformation. J Inst Met. 1948;74:537-562.
10 Deng GY, Lu C, Tieu AK, Su LH, Huynh NN, Liu XH. Crystal plasticity investigation of friction effect on texture evolution of Al single crystal during ECAP. J Mater Sci. 2010;45:4711-4717. http://dx.doi.org/10.1007/s10853-010- 4674-2
11 Mendes Filho AA, Sordi VL, Rubert JB, Ferrante M. The influence of ECAP die geometry on shear strain and deformation uniformity. Mater Sci Forum. 2008;584-586:145-150. http://dx.doi.org/10.4028/www.scientific.net/ MSF.584-586.145
12 Valio, GT, Ferrante M, Sordi VL. Extrusão em canal angular da liga Pb-52%Sn: Influência do projeto da matriz no grau e força de deformação. In: Anais do 19. Congresso Brasileiro de Engenharia e Ciência dos Materiais – CBECIMAT; 2010; Campos do Jordão; Brasil. São Paulo: Metallum; 2010. p. 6875-6882.
13 Alhajeri SN, Gao N, Langdon TG. Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP. Mater Sci Eng A-Struct. 2011;528:3833-3840. http://dx.doi.org/10.1016/j. msea.2011.01.074
14 Cerri E, Marco PP, Leo P. FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: Influence of material properties and different process settings on induced plastic strain. J Mater Process Tech. 2009;209:1550-1564. http://dx.doi.org/10.1016/j.jmatprotec.2008.04.013
15 Xu C, Langdon TG. The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP. J Mater Sc.i 2007; 42:1542-1550. http://dx.doi.org/10.1007/s10853-006-0899-5
16 El-Danaf, Soliman MS, Almajid AA, El-Rayes MM. Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP. Mater Sci Eng A-Struct. 2007;458:226-234. http://dx.doi. org/10.1016/j.msea.2006.12.077
17 Horita Z, Fujinami T, Nemoto M, Langdon TG. Improvement of mechanical properties of Al alloys using equal-channel angular pressing. J Mater Process Tech. 2001;117:288-292. http://dx.doi.org/10.1016/S0924- 0136(01)00783-X