COMPETIÇÃO ENTRE RECUPERAÇÃO E RECRISTALIZAÇÃO DINÂMICA DO AÇO INOXIDÁVEL AUSTENÍTICO ASTM F 138 UTILIZADO EM IMPLANTES ORTOPÉDICOS
COMPETITION BEETWEN DYNAMIC RECUPERATION AND RECRYSTALLIZATION OF ASTM F 138 AUSTENITIC STAINLESS STEEL UTILIZED IN MEDICAL DEVICES
Geronimo, Fabio Henrique C.; Balancin, Oscar
http://dx.doi.org/10.4322/tmm.2013.022
Tecnol. Metal. Mater. Min., vol.10, n2, p.162-169, 2013
Resumo
O aço inoxidável austenítico ASTM F138 é utilizado na fabricação de próteses ortopédicas por forjamento. Neste trabalho determinam-se as curvas de escoamento plástico deste aço por meio de ensaios de torção a quente em ampla faixa de temperaturas e diferentes taxas de deformação. A observação microestrutural em diferentes condições de deformação, em conjunto com a utilização da técnica EBSD (Electron Backscatter Difraction), permite calcular a fração recristalizada e identificar as proporções de contornos de alto e baixo ângulos. Tendo esse aço um nível intermediário de Energia de Falha de Empilhamento (EFE), durante o amaciamento dinâmico ocorre a competição entre os mecanismos de recuperação e de recristalização dinâmicas. Assim, este trabalho tem o intuito de identificar os possíveis mecanismos de amaciamento deste aço, bem como aponta em quais condições se tornam mais atuantes.
Palavras-chave
Torção a quente, Recristalização dinâmica, Aço austenítico, EBSD
Abstract
ASTM F 138 austenitic stainless steel has being used in the manufacture of orthopedical devices by hot forging. In this work, the flow stress curves are determined by hot torsion tests in a wide range of temperatures and strain rates. With the observed microestrutural evolution by optical microscopy in different hot forming conditions in addiction with EBSD (Electron Backscatter Diffraction) techniques it is possible to obtained the recrystallized volume fraction and the misorientation angles of the samples. Due to the intermediate level of stacking fault energy of this material, during the dynamic softening occurs a competition between recrystallization and recovery. The aim of this work is to identify the softening mechanisms in this stainless steel, as well as in which hot work conditions they become more active. Key words: Hot torsion; Dynamic recrystallization; Austenitic stainless steel; EBSD.
Keywords
Hot torsion, Dynamic recrystallization, Austenitic stainless steel, EBSD
Referências
1 McQueen HJ, Jonas JJ. Recovery and recrystallization during high temperature deformation. In: Herman H, editor. Treatise on materials science and technology. New York: Academic Press; 1975. v. 6, p. 393-493.
2 Ahlblom B, Sandstrom R. Hot workability of stainless steel: Influence of deformation parameters, microstrutural components and restoration process. Int Metals Rev. 1982;1:1-27. http://dx.doi.org/10.1179/095066082790324441
3 Taylor AS, Hodgson PD. Dynamic behaviour of 304 stainless steel during high Z deformation. Mat Sci Eng A-Struct. 2011;528:3310-3320. http://dx.doi.org/10.1016/j.msea.2010.12.093
4 Samantaray D. et al. Flow behavior and microstructural evolution during hot deformation of AISI type 316 L(N) austenitic stainless steel. Mat Sci Eng A-Struct. 2011;528:29-30. http://dx.doi.org/10.1016/j.msea.2011.08.012
5 Schramm RE, Reed RP. Stacking fault energy of seven commercial austenitic stainless steels. Metall Mater Trans A. 1975;6:1345-1351. http://dx.doi.org/10.1007/BF02641927
6 Dieter EG. Mechanical metallurgy. New York: Mc Graw-Hill;1976.
7 McQueen HJ. The production and utility of recovered dislocation substructure. Metall Mater Trans A. 1977;8:807‑824. http://dx.doi.org/10.1007/BF02661562
8 Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater. 1998;46:69-80. http://dx.doi.org/10.1016/S1359-6454(97)00233-4
9 Jonas JJ, Quelennec X, Lan J, Martin E. The Avrami kinetics of dynamic recrystallization. Acta Mater. 2009;57:2748‑2756. http://dx.doi.org/10.1016/j.actamat.2009.02.033
10 Stuwe HP, Padilha AF, Siciliano Junior F. Competition between recovery and recrystallization. Mat Sci Eng A-Struct. 2002;333:361-7. http://dx.doi.org/10.1016/S0921-5093(01)01860-3
11 El Wahabi M, Gavard L, Cabrera JM, Prado JM, Montheillet F. EBSD study of purity effects during hot working in austenitic stainless steels. Mat Sci Eng A-Struct. 2005;393:83-90. http://dx.doi.org/10.1016/j.msea.2004.09.064
12 Davenport SB, Silk NJ, sparks CN, Sellars CM. Development of constitutive equations for modeling of hot rolling. Mater Sci Technol. 2000;16:539-546. http://dx.doi.org/10.1179/026708300101508045
13 Jafari M, Najafizadeh A. Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel. Mat Sci Eng A-Struct. 2009;501:16-25. http://dx.doi.org/10.1016/j. msea.2008.09.073
14 Jafari M, Najafizadeh A, Rasti J. Dynamic recrystallization by necklace mechanism during hot deformation of 316 stainless steel. Int J Iron Steel Soc Iran. 2007;4:16-23.
15 Poliak EI, Jonas JJ. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 2003;43:684‑691. http://dx.doi.org/10.2355/isijinternational.43.684
16 Doherty RD, Hughes DA, Humpheys FJ, Jonas JJ, Juul Jensen D, Kassner ME et al. Current issues in recrystallization: a review. Mat Sci Eng A-Struct. 1997;238:219-274. http://dx.doi.org/10.1016/S0921-5093(97)00424-3
17 Almeida JAD, Barbosa R. Hot deformation of 304 type austenitic stainless steel at high strain rates. ISIJ Int. 2003;43:264-266. http://dx.doi.org/10.2355/isijinternational.43.264