Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.2013.030
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

MODELOS MATEMÁTICOS PARA A EVOLUÇÃO DA MICROESTRUTURA NA LAMINAÇÃO DE TUBOS SEM COSTURA

MATHEMATICAL MODELS FOR MICROSTRUCTURE EVOLUTION IN THE SEAMLESS TUBE ROLLING

Carvalho, Ricardo Nolasco; Ferreira, Marcelo Almeida C.; Santos, Dagoberto Brandão; Barbosa, Ronaldo Antônio N. M.

Downloads: 0
Views: 907

Resumo

O objetivo deste trabalho é apresentar os recentes desenvolvimentos em modelagem matemática para a evolução da microestrutura de diversos tipos de aços, aplicados à laminação contínua de tubos sem costura. O desenvolvimento desses modelos depende de uma cuidadosa caracterização do ciclo termomecânico e da correta seleção e ajuste das equações que descrevem os diversos fenômenos metalúrgicos envolvidos. Os ajustes desses modelos são elaborados utilizando-se resultados obtidos em simulação por torção a quente. Para isso, os ciclos termomecânicos são simplificados considerando-se as limitações do equipamento em reproduzir algumas deformações, velocidades de deformação e velocidades de resfriamento desenvolvidas industrialmente. Amostras para microscopia óptica foram obtidas através da interrupção das simulações depois de determinadas etapas. Após ajuste de cada modelo com os resultados obtidos na simulação, as microestruturas finais são comparadas com aquelas obtidas em escala industrial. De modo geral, são observadas boas correlações

Palavras-chave

Ensaio de torção a quente, Laminação, Tubo sem costura, Modelamento microestrutural

Abstract

The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained in hot torsion simulations. For this, the thermomechanical cycles are simplified considering the equipment limitations in reproduce some strain, strain rates and cooling rates developed industrially. Samples for optical microscopy were obtained by interruption of simulations after selected steps of process. After adjustment of each model with results from simulation, the final microstructures are compared with those obtained in industrial scale. In general, good correlations are observed.

Keywords

Hot torsion test, Rolling, Seamless tube, Microstructure modeling

Referências



1. Pussegoda LN, Barbosa R, Yue S, Jonas JJ, Hunt PJ. Laboratory simulation of seamless-tube rolling. Journal of Materials Processing Technology. 1991;25:69-90, 1991. http://dx.doi.org/10.1016/0924-0136(91)90103-L

2. Pussegoda LN, Yue S, Jonas JJ. Effect of intermediate cooling on grain refinement and precipitation during rolling of seamless tubes. Materials Science and Technology. 1991;7:129-136. http://dx.doi.org/10.1179/026708391790183015

3. Maccagno TM, Jonas JJ, Hodgson PD. Spreadsheet modelling of grain size evolution during rod rolling. ISIJ International. 1996;36:720-728. http://dx.doi.org/10.2355/isijinternational.36.720

4. Siwecki T. Modelling of microstructure evolution during recrystallization controlled rolling. ISIJ International. 1992;32:368-376. http://dx.doi.org/10.2355/isijinternational.32.368

5. Sellars CM, Beynon JH. Microstructural development during hot rolling of titanium microalloyed steels. In: High Strength Low Alloy Steels; 1985; Wollongong, Austrália. Wollogong; 1985. p. 142-150.

6. Sellars CM. Modeling microstructural development during hot rolling. Materials Science and Technology. 1990;6:1072-1081. http://dx.doi.org/10.1179/026708390790189966

7. Beynon JH, Sellars CM. Modeling microstructure and its effects during multipass hot rolling. ISIJ International. 1992;32:359-367. http://dx.doi.org/10.2355/isijinternational.32.359

8. Siciliano FJ, Jonas JJ. Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. Metallurgical and Materials Transactions A. 200;31:511-530.

9. Uranga P, Fernandez AI, Lopez B, Rodriguez-Ibabe, JM. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Materials Science and Engineering A. 2003;345:319-327. http://dx.doi. org/10.1016/S0921-5093(02)00510-5

10. Carvalho RN, Ferreira MAC, Santos DB, Barbosa R. Evolução microestrutural na laminação a quente de tubos sem costura. In: Anais do 61. Congresso Anual da ABM; 2006; Rio de Janeiro, Brasil. São Paulo: ABM; 2006. p. 2545-2553.

11. Carvalho RN, Ferreira MAC, Santos DB, Barbosa R. Evolução da microestrutura de um aço microligado ao V-N na laminação contínua de tubos sem costura. In: 44. Seminário de Laminação - Processos e Produtos Laminados e Revestidos; 2007; Campos do Jordão, Brasil. São Paulo: ABM; 2007. p. 378-388.

12. Carvalho RN, Ferreira MAC, Santos DB, Barbosa R. Modelo matemático para a evolução da microestrutura de aços microligados ao VNb e ao VNbTi na laminação de tubos sem costura. In: Anais do 63. Congresso Anual da ABM; 2008; Santos, Brasil. São Paulo, ABM: 2008. [CD-ROM].

13. Poliak EI, Jonas JJ. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ International. 2003;43:684-691. http://dx.doi.org/10.2355/isijinternational.43.684

14. Sellars CM. The physical metallurgy of hot working. In: Sellars CM, Davies, GJ. Hot working and forming processes. Proceedings of na Internation Conference on Hot Working and Forming Process; 1979; Sheffield, England. London: The Metals Society; [s.d.]. p. 3-15.

15. Hodgson PD, Gibbs RK. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed of steels. ISIJ International. 1992;32:1329-1338. http://dx.doi.org/10.2355/isijinternational.32.1329

16. Palmiere EJ, Garcia, C. I, Deardo, A. J. Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium. Metallurgical and Materials Transactions A. 1994;25:277-286.

17. Santos DB. Refinamento de grão ferrítico através da laminação controlada com deformações na região (g+a) [tese de doutorado]. Belo Horizonte: Universidade Federal de Minas Gerais; 1991.

18. Medina SF, Lopez V. Static recrystallization in austenite and its influence on microstructural changes in C-Mn steel and vanadium microalloyed steel at the hot strip mill. ISIJ International. 1993;33:605-614. http://dx.doi.org/10.2355/ isijinternational.33.605

19. Roucoles C. Dynamic and metadynamic recrystalization in HSLA steels (PhD Thesis). Montreal: McGill University; 1992 Apud: Siciliano F, Jonas JJ. Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. Metallurgical and Materials Transactions A. 2000;31:511-530.

20. Roberts W, Sandberg A, Siwecki T, Werlefors T. Prediction of microstructure development during recrystallization hot rolling of Ti-V steels. In: International Conference on Technology and Applications of HSLA Steels; 1984; Philadelphia, USA. Metals Park: ASM; 1984. p. 67-84.

21. Medina SF, Quispe A. Improved model for static recrystallization kinetics of hot deformed austenite in low alloy and Nb/V microalloyed steels. ISIJ International. 2001;41:774-781. http://dx.doi.org/10.2355/isijinternational.41.774

22. Roucoules C, Yue S, Jonas JJ. Effect of dynamic and metadynamic recrystallization on rolling load and microstructure. In : Proceedings of the 1st International Conference on Modeling of Metal Rolling Process; 1993; London, England. London: The Institute of Materials; 1993. p. 1329-1338. Apud: Siciliano F, Jonas JJ. Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. Metallurgical and Materials Transactions A. 2000;31;511-530.
588696e47f8c9dd9008b474d tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections