Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.2014.002
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

AVALIAÇÃO DAS PROPRIEDADES MICROESTRUTURAIS E MECÂNICAS DAS LIGAS TI-35NB-7ZR E TI-41,1NB-7,1ZR PARA APLICAÇÃO BIOMÉDICA

EVALUATION OF MICROSTRUCTURAL AND MECHANICAL PROPERTIES OF THE TI-35NB-7ZR E TI-41,1NB-7,1ZR BIOMEDICAL ALLOYS

Macedo, Beatriz Zuleika de; Schneider, Sergio; Schneider, Sandra Glacomin

Downloads: 0
Views: 483

Resumo

O principal objetivo deste trabalho foi obter ligas Ti-β, isentas de elementos considerados tóxicos (Al e V), com módulo de elasticidade menor para melhorar a compatibilidade mecânica com o osso humano (17-35 GPa) [1,2]. As ligas Ti-35Nb-7Zr e Ti-41,1Nb-7,1Zr foram produzidas em forno a arco sob atmosfera de argônio. Os lingotes obtidos, com diâmetro inicial de 18 mm, foram submetidos a tratamento térmico de solubilização, forjamento a frio e tratamento de recristalização até o diâmetro final de 6 mm. Para caracterizar a microestrutura das ligas utilizou-se técnicas de microscopia óptica, difração de raios-X e dureza. A caracterização mecânica foi feita por meio de ensaios de tração uniaxial. Os resultados mostram que as propriedades variam consideravelmente em função das composições estudadas. Os resultados das análises microestruturais indicam que as ligas são do tipo Ti-β. A liga Ti-35Nb-7Zr na condição solubilizada, possui menor dureza (157 HV). Os valores da dureza das ligas com 35 Nb e 41,1 Nb, na condição recristalizada, foram próximos 161 e 169HV, respectivamente. A liga Ti-35Nb-7Zr apresentou o menor módulo de elasticidade (54GPa) e maior ductilidade, considerando-se os valores de redução em área e alongamento percentual, sem comprometer o limite de resistência.

Palavras-chave

Ligas Ti-β, Ti-Nb-Zr, Propriedades mecânicas, Propriedades microestruturais

Abstract

The aim of this work was to achieve Ti-β alloys without considerable toxic elements (Al and V) with lower elastic moduli to improve the mechanical compatibility with the bone (17 GPa-35 GPa) [1,2]. Ti-35Nb-7Zr and Ti-41,1Nb-7,1Zr alloys were produced in fusion by arc melting under argon atmosphere. The ingots, with the initial diameter of 18 mm were submitted to solution heat treatment, cool rotary forging and recrystallization treatment until 6 mm of diameter. The microstructural analyses were performed using Optical Microscopy, X-ray diffraction and hardness. The mechanical characterization was evaluated through uniaxial tensile tests. The results showed that properties are dependent on the compositions studied. Microstructure results indicated that both alloys are Ti-β. Ti-35Nb-7Zr in β-solution treated condition posses the lowest value of hardness (157 HV). Vickers hardness values for alloys within 35Nb and 41,1Nb, in the recrystallization condition were very close 161 and 169 HV, respectively. The Ti-35Nb-7Zr alloy presented the lowest elastic modulus (54 GPa) and the highest ductility, based on reduction of area and elongation without change tensile strength.

Keywords

Ti-β alloys, Ti-Nb-Zr, Mechanical properties, Microstructural properties

Referências



1. Davidson JA, Mishra AK, Kovasc P, Poggie RA. New surfacehardened, low-modulus, corrosion-resistant Ti-13Nb- 13.Zr alloy for total hip arthroplasty. Bio-Medical Materials and Engineering. 1994;4:231-43. PMid:7950871.

2. Willians DF. Biocompatibility of clinical implant materials. Florida: Plenum Press; 1981.

3. Abdel-Hady M, Hinoshita K, Fuwa H, Murata Y, Morinaga M. Change in anisotropy of mechanical properties with β-phase stability in high Zr-containing Ti-based alloys. Materials Science and Engineering A. 2008;480:167-74. http:// dx.doi.org/10.1016/j.msea.2007.06.083

4. Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A. 1998;243:231- 36.. http://dx.doi.org/10.1016/S0921-5093(97)00806-X

5. Mantani Y, Tajima M. Effect of ageing on internal friction and elastic modulus of Ti–Nb alloys. Materials Science and Engineering A. 2006;442:409-13. http://dx.doi.org/10.1016/j.msea.2006.03.124

6. Laheurte P, Eberhardt A, Philippe MJ. Influence of the microstructure on the pseudoelasticity of a metaestable beta titanium alloy. Materials Science and Engineering A. 2005;396:223-30. http://dx.doi.org/10.1016/j.msea.2005.01.022

7. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki H, Miyazaki S. Shape memory characteristics of Ti-22Nb-(2-8) Zr (at.%) biomedical alloys. Materials Science and Engineering A. 2005;403:334-39. http://dx.doi.org/10.1016/j. msea.2005.05.050

8. Hao LY, Li SJ, Sun SY, Yang R. Effect of Zr and Sn on Young’s modulus and superplasticity of Ti-Nb-based alloys. Materials Science and Engineering A. 2006;441:112-18. http://dx.doi.org/10.1016/j.msea.2006.09.051

9. Zhou YL, Niinomi M, Akahori T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Materials Science & Engineering A. 2004;371:283-90. http://dx.doi.org/10.1016/j. msea.2003.12.011

10. Tang X, Ahmed T, Rack HJ. Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. Journal of Materials Science. 2000;35:1805-11. http://dx.doi.org/10.1023/A:1004792922155

11. Mariolani JRL, Belangero WD, Arruda ACF. Triage methodology for the evaluation of implant-bone interfaces. Biomaterials. 1994;15(8):615-20. http://dx.doi.org/10.1016/0142-9612(94)90212-7

12. Hao LY, Li SJ, Zheng CY, Yang R. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical application. Acta Biomaterialia. 2007;3:277-82. PMid:17234466. http://dx.doi.org/10.1016/j.actbio.2006.11.002

13. Elias LM, Schneider SG, Schneider S, Silva HM, Malvisi F. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Materials Science and Engineering A. 2006;432:108-12. http://dx.doi. org/10.1016/j.msea.2006.06.013

14. American Society for Testing Materials. ASTM-03-01-E8M-97: Standart test methods tension testing of metallic materials. West Conshohocken: ASTM; 1997.

15. Zhou YL, Niinomi M, Akahori T. Decomposition of martensite a’’ during aging treatments and resulting mechanical properties of Ti-Ta alloys. Materials Science and Engineering A. 2004;384(1-2):92-101. http://dx.doi.org/10.1016/j. msea.2004.05.084
588696ea7f8c9dd9008b4768 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections