Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.2014.009
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

SEGREGAÇÃO EM AÇOS ALTA-RESISTÊNCIA BAIXA LIGA (ARBL) PARA APLICAÇÕES EM SERVIÇO COM H2S: AVALIAÇÃO POR TERMODINÂMICA COMPUTACIONAL*

SEGREGATION IN HSLA STEELS FOR SOUR SERVICE: AN EVALUATION USING COMPUTATIONAL THERMODYNAMICS

Silva, André Luiz V. da C. e

Downloads: 0
Views: 482

Resumo

A quantidade, tipo e distribuição de inclusões não-metálicas assim como a segregação de solidificação tem grande importância no desempenho dos aços ARBL empregados na indústria do petróleo em serviço com H2S (sour service). Embora o efeito do manganês na segregação e na limpeza interna tenha sido estudado experimentalmente e, parcialmente, através de modelos matemáticos de solidificação, de outros elementos, especialmente o silício, são empregados como adições relevantes nestes aços sem um conhecimento mais preciso de seu comportamento na solidificação, especialmente sob o ponto de vista da segregação. Neste trabalho a extensão da segregação dos principais elementos de liga em aços ARBL para sour service é avaliada através de diferentes modelos de termodinâmica computacional. Em particular, são empregados dois casos limites para comparação: a solidificação em equilíbrio e o caso extremo do modelo de Scheil, em que o liquido é considerado homogêneo e assume-se que não ocorre homogeneização no sólido, durante o processo de solidificação. Modelos considerando a difusão no sólido são aplicados para algumas composições mais interessantes. Os resultados são comparados com dados experimentais disponíveis para alguns aços e alguns elementos e servem como base para uma primeira avaliação do potencial da alteração do projeto destas ligas, sob o aspecto da segregação e limpeza interna.

Palavras-chave

Termodinâmica computacional, Sour service, Aços, Solidificação.

Abstract

The amount, type and distribution of non-metallic inclusions as well as the solidification segregation, which influences inclusion type and distribution, have great influence on the performance of High Strength Low Alloy (HSLA) steels used in sour service in the oil industry. The effects of manganese, both on segregation and on steel cleanness have been studied through experiments and, to a lesser extent, through mathematical modeling of solidification. However, the effect of some other relevant elements added to these steels, in special those effects caused by solidification segregation, have not been extensively studied. In the present work, the extent of segregation and the probable effect on inclusion distribution of the main elements in HSLA steels used in sour service are evaluated through different computational thermodynamic models. In particular, two limiting cases bound the comparison: equilibrium solidification and the Scheil model, in which no homogenization in the solid phase is assumed. Special attention is given to silicon. For relevant compositions, models considering solid and liquid state diffusion are used. The results are compared with experimental data available for some steel compositions and serve as basis for a first evaluation of the alloy design strategy currently applied to these steels, from the point of view of segregation and internal cleanness.

Keywords

Computational thermodynamics, Sour service, Steels, Solidification

Referências



1. National Association of Corrosion Engineers International Institute - NACE. ANSI/NACE MR0175/ ISO15156-1: Petroleum and natural gas industries - Materials for use in H2S-containing environments in oil and gas production - Part 1: General principles for selection of cracking-resistant materials. Houston: NACE; 2009.

2. Companhia Brasileira de Metalurgia e Mineração - CBMM. Microalloyed Steels for Sour Service International Seminar. 2012; São Paulo, Brasil. Araxá: CBMM; 2012.

3. Domizzi G, Anteri G, Ovejero-Garcia J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels. Corrosion Science. 2001;43:325-39. http://dx.doi. org/10.1016/S0010-938X(00)00084-6

4. Jacobi H. Qualitaetentwiclung bei sauergasbestaendigen Grossrohrstaehlen- vermeidung der Mittenseigerung sowie der Auscheidung von Mangansulfid und primaeren Niobcarbonitrid [thesis]. Clausthal: Clausthal University; 1991.

5. Carneiro RA, Ratnapuli RC, Lins VFC. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking. Materials Science and Engineering A. 2003;A357:104-10. http://dx.doi.org/10.1016/S0921-5093(03)00217-X

6. Mizoguchi S. A study on segregation and oxide inclusions for the control of steel properties [thesis]. Tokio: University of Tokyo; 1996.

7. Matsumiya T. Mathematical analyses of segregations and chemical compositional changes of nonmetallic inclusions during solidification of steels. Materials Transactions JIM. 1992;33(9):783-94.

8. Matsumiya T, Kajioka H, Mizoguchi S, Ueshima Y, Esaka H. Mathematical analysis of segregations in continuous cast slabs. Transaction ISIJ. 1984;24:873-882. http://dx.doi.org/10.2355/isijinternational1966.24.873

9. Scheil E. Uber die eutektische kristallisation. Zeitschrift Fur Metallkunde. 1942;34:70-72.

10. Thermo-calc Software AB - TCAB. DICTRA User’s Guide. version 26. Stockholm: TCAB; 2010.

11. Colpaert H, Costa e Silva A. Metalografia dos produtos siderúrgicos comuns. 4. ed. São Paulo: Editora Blucher; 2008.

12. Costa e Silva A, Mei PR. Aços e ligas especiais. 3. ed. São Paulo: Edgard Blücher; 2010.

13. Thermo-calc Software AB - TCAB. TCC Thermo-calc Software Users guide. version Q. Stockholm: TCAB; 2004.

14. Brody HD, Flemings MC, Solute Redistribution in Dendritic Solidification. Transactions AIME. 1966;236:615-624.

15. Clyne TW, Kurz W. Solute Redistribution During Solidification with Rapid Solid State Diffusion. Metallurgical Transactions A. 1981;12A:965-971.

16. Rappaz M. Modelling of microstructure formation in solidification processes. International Materials Reviews. 1989;34(1):93-124. http://dx.doi.org/10.1179/imr.1989.34.1.93

17. Cramb A, editor. The making, shaping and treating of steel, casting volume. 11th ed. Pittsburgh: AISE; 2003.

18. Ueshima Y, Mizoguchi S, Matsumiya T, Kajioka H. Analysis of solute distribution in dendrites of carbon steel with delta/gamma transformation during solidification. Metallurgical Transactions B. 1986;17B:845-59.

19. Chen Q, Sundman B. Computation of partial equilibrium solidification with complete interstitial and negligible substitutional back diffusion. Materials Transactions JIM. 2002;43(3):551-9. http://dx.doi.org/10.2320/ matertrans.43.551

20. Bailey WH. Refining and casting of large forging ingots. Ironmaking & Steelmaking. 1977;4(2):72-80.

21. Davis CL, Strangwood M. Segregation behaviour in Nb microalloyed steels. Materials Science and Technology. 2009;25(9):1126-33. http://dx.doi.org/10.1179/174328409X453262

22. Lesoult G. Macro segregation in steel strands and ingots: Characterization, formation and consequences. Materials Science and Engineering A. 2005;413:19-29. http://dx.doi.org/10.1016/j.msea.2005.08.203

23. Nippon Kokan. Soft reduction of CC strand to improve centerline segregation. Transactions ISIJ. 1988;28:413. http://dx.doi.org/10.2355/isijinternational1966.28.413

24. Flemings MC. Solidification. In: Sano N, Lu W-K, Riboud PV, Maeda M, editors. Advanced physical chemistry for process metallurgy. San Diego: Academic Press; 1997. p.151-82.

25. Weisgerber B, Hecht M, Harste K. Investigations of the solidification structure of continuously cast slab. Steel Research. 1999;70(10):403.

26. Suzuki A, Suzuki T, Nagaoka Y, Iwata Y. On secondary dendrite arm spacing in commercial carbon steels with different carbon content. Journal of JIM. 1968;9(12):1301-5.

27. Wang W, Zhu M, Cai Z, Luo S, Ji C. Micro-segregation behavior of solute elements in the mushy zone of continuous casting wide-thick slab. Steel Research International. 2012;83(12):1152-62. http://dx.doi.org/10.1002/ srin.201200102

28. Cicutti C. Casting parameters. 2013. [Comunicação pessoal].

29. Goto H, Miyazawa K, Kadoya T. Effect of the composition of oxides on the reaction between oxide and sulfur during solidification of steel. ISIJ International.1995;35:1477-82. http://dx.doi.org/10.2355/isijinternational.35.1477

30. Lehmann J, Rocabois P, Gaye H. Kinetic model of non-metallic inclusions precipitation during steel solidification. Journal of Non-Crystalline Solids. 2001;282:61-71. http://dx.doi.org/10.1016/S0022-3093(01)00329-5

31. Thermo-calc Software AB - TCAB. MOBFE2 Database. Stockholm: TCAB; 2011.

32. Khatayat TS, Mukherjee PK, Goyal RK, Shant JR, Hill R. High wall thick DLSAW pipes for sour service application by JCOE process. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012.

33. Silva R, Souza M, Chad L, Teixeira M. Development of hight toughness API 5L X70MS pipe for offshore ultradeep water application. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012.

34. Nieto J, Elías T, López G, Campos G, López F, De AK. Process and quality controls for the production of linepipe slabs for sour service applications at ArcelorMittal Lazaro Cardenas, Mexico. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012.

35. Ishikawa N, Endo S, Muraoka R, Kakihara S, Kondo J. Material design of high strength heavy gauge linepipes for sour service. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012.

36. Schneider A, Stallybrass C, Konrad J, Kulgemeyer A, Meuser H, Meimeth S. Formation of primary TiN precipitates during solidification of microalloyed steels–Scheil versus DICTRA simulations. International Journal of Materials Research. 2008;99(6):675-679.

37. Ueshima Y, Komatsu N, Mizoguchi S, Kajioka H. Effects of alloying elements on interdendritic microsegregation of carbon steel. Tetsu to Hagane.1987;73(11):1551-1558.

38. Barbaro F. 2013. [Comunicação pessoal].

39. Costa e Silva A. Calcium and magnesium thermodynamics in steel and its impacts on secondary steelmaking: a computational thermodynamics approach. Revue de Metallurgie - CIT. 2008;105(4):181-93. http://dx.doi. org/10.1051/metal:2008030

40. Costa e Silva A. Controle de Inclusões não-metálicas em aços - Passado, presente e futuro. Keynote Lecture. In: 60 Associação Brasileira de Metalurgia, Materiais e Mineração. Anais do Congresso Anual da ABM. São Paulo: ABM; 2005. PMCid:PMC1087878.

41. Hejazi D, Haq AJ, Yazdipour N, Dunne DP, Calka A, Barbaro F et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking. Materials Science and Engineering: A. 2012;551:40-9. http://dx.doi.org/10.1016/j.msea.2012.04.076

42. Hulka K, Bordignon P, Gray JM. Experience with low carbon HSLA Steel containing 0.06 to 0.1 percent Niobium [Niobium Technical Report 1/04]. São Paulo: CBMM; 2004.
588696e97f8c9dd9008b4765 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections