RESISTÊNCIA À CORROSÃO DE LATAS DE ALUMÍNIO EM CONTATO COM CERVEJA
CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER
Esteves, Luiza; Garcia, Eric Marsalha; Castro, Maria das Mercês R. de; Lins, Vanessa de Freitas C.
http://dx.doi.org/10.4322/tmm.2014.034
Tecnol. Metal. Mater. Min., vol.11, n3, p.229-235, 2014
Resumo
Latas de alumínio com recobrimento orgânico são usadas no Brasil como embalagem para bebidas carbonatadas (refrigerantes, cerveja), que agem como soluções eletroliticas. Estes eletrólitos, em contato com o interior da lata metálica, iniciam o processo corrosivo do alumínio. A presença de ions metálicos pode mudar o sabor da bebida, comprometendo a qualidade do produto. Este trabalho objetiva avaliar a resistência à corrosão do alumínio em meio de cerveja usando a técnica de espectroscopia de impedância eletroquímica (EIE). A microscopia eletrônica de varredura (MEV) e a espectroscopia de energia dispersiva (EDS) foram usadas para avaliar a superfície metálica. Dois lotes de diferentes espessuras de revestimento orgânico foram analisados para a mesma data de fabricação. A resistência do eletrólito e a resistência à tranaferência de carga do alumínio na cerveja variaram dependendo do lote analisado.
Palavras-chave
Latas de alumínio, Cerveja, Corrosão, Espectroscopia de impedância eletroquímica.
Abstract
Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer), which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS). The Scanning Electron Microscopy (SEM) and the Energy Dispersive Spectroscopy (EDS) were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.
Keywords
Aluminum cans, Beer, Corrosion, Electrochemical impedance spectroscopy (EIS).
Referências
1. Urban J, Dahlberg CJ, Carroll BJ, Kaminsky W. Absolute configuration of beer’s bitter compounds. Angewandte Chemie International Edition. 2013;52(5):1553-1555. PMid:23239507 PMCid:PMC3563212. http://dx.doi.org/10.1002/anie.201208450
2. Abralatas. [acesso em 21 out. 2012]. Disponível em: www.abralatas.org.br
3. Abralatas. Lata de alumínio: embalagem conquista espeaço em diversos segmentos. Revista da Lata. 2012; 2012:19.
4. Jena S, Das H. Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering. 2012;108(1):135-142. http://dx.doi.org/10.1016/j.jfoodeng.2011.06.036
5. Bernardo PEM, Santos JLC, Costa NG. Influence of the lacquer and end lining compound on the shelf life of the steel beverage can. Progress in Organic Coatings. 2005;54(1):34-42. http://dx.doi.org/10.1016/j.porgcoat.2005.04.002
6. Xia D, Song S, Gong W, Jiang Y, Gao Z, Wang J. Detection of corrosion-induced metal release from tinplate cans using a novel electrochemical sensor and inductively coupled plasma mass spectrometer. Journal of Food Engineering. 2012;113(1):11-18. http://dx.doi.org/10.1016/j.jfoodeng.2012.05.035 Resistência à corrosão de latas de alumínio em contato com cerveja
7. Pournaras AV, Prodromidis MI, Katsoulidis AP, Badeka AV, Georgantelis D, Kontominas MG. Evaluation of lacquered tinplated cans containing octopus in brine by employing X-ray microanalysis and electrochemical impedance spectroscopy. Journal of Food Engineering. 2008;86(3):460-464. http://dx.doi.org/10.1016/j.jfoodeng.2007.09.034
8. Faria EV. Avaliação do desempenho de latas de folha-de-flandres por meio da espectroscopia de impedância eletroquímica e do acompanhamento da estocagem de palmito pupunha (Bactrisgasipaes) enlatado [tese de doutorado]. Campinas: UNICAMP; 2000.
9. Catalá R, Cabañes JM, Bastidas JM. An impedance study on the corrosion properties of lacquered tinplate cans in contact with tuna and mussels in pickled sauce. Corrosion Science. 1998;40(9):1455-1467. http://dx.doi.org/10.1016/S0010-938X(98)00050-X
10. Hollaender J, Ludwig E, HillebrandI S. Assessing protective layers on metal packaging material by electrochemical impedance spectroscopy (EIS). In: International Tin Research Institute. Proceedings of International Tinplate Conference; 1992; London, United Kingdom. Middlesex: International Tin Research Institute; 1992. p. 300-315.
11. Katemann BB, Inchauspe CG, Castro PA, Schulte A, Calvo EJ, Schuhmann W. Precursor sites for localised corrosion on lacquered tinplates visualised by means of alternating current scanning electrochemical microscopy. Electrochimica Acta. 2003;48(9):1115-1121. http://dx.doi.org/10.1016/S0013-4686(02)00822-8
12. Grandle JA, Taylor SR. Electrochemical impedance spectroscopy of coated aluminum beverage containers: Part 1- Determination of a parameter for large sample evaluation. Corrosion: The Journal of Science and Engineering. 1994;50(10):792-803. http://dx.doi.org/10.5006/1.3293469
13. Bastidas JM, Damborenea JJ, Gonzalez JA, Otero E, Chacon ME, Archer WI, et al. An electrochemical study on the influence of oxygen in tinplate corrosion and inhibition. Corrosion Science. 1990;30(2-3):171-182. http://dx.doi.org/10.1016/0010-938X(90)90071-C
14. Biermann MC, Sandenbergh RF, von Moltke TVS. Characteristics and lacquer adhesion on dip and CDC chromium passivated tinplate. Corrosion Science. 2006;48(10):2925-2936. http://dx.doi.org/10.1016/j.corsci.2005.10.018
15. Blunden SJ, Harris PG, Notter IM. A re-evaluation of the surface composition and morphology of the tinplate D&I cans: the limitations of electrochemical porosity tests. Corrosion Science. 1991;32(8):827-839. http://dx.doi.org/10.1016/0010-938X(91)90027-M
16. Ingo GM, Giorgi L, Zacchetti N, Azzerri N. Electrochemical and XPS studies on lacquer—low tinplated steel adhesion. Corrosion Science. 1992;33(3):361-377. http://dx.doi.org/10.1016/0010-938X(92)90066-C
17. Li X, Deng S, Xie X. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution. Corrosion Science. 2014;81:162-175. http://dx.doi.org/10.1016/j.corsci.2013.12.021
18. Arrabal R, Mingo B, Pardo A, Mohedano M, Matykina E, Rodríguez I. Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.% NaCl solution. Corrosion Science. 2013;73:342-355. http://dx.doi.org/10.1016/j.corsci.2013.04.023
19. Murer N, Buchheit RG. Stochastic modeling of pitting corrosion in aluminum alloys. Corrosion Science. 2013;69:139-148. http://dx.doi.org/10.1016/j.corsci.2012.11.034
20. Johansen HD, Brett CMA, Motheo AJ. Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings. Corrosion Science. 2012;63:342-350. http://dx.doi.org/10.1016/j.corsci.2012.06.020
21. Esteves L. Resistência à corrosão de embalagens de alumínio em contato com bebidas carbonatadas. Belo Horizonte: UFMG; 2013.
22. Bonora PL, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpainting corrosion. Electrochemica Acta. 1996;41(7-8):1073-1082. http://dx.doi.org/10.1016/0013-4686(95)00440-8
23. Moreira BG. Diferenciação de bebidas alcoólicas e não-alcoólicas no Sistema de Medição de Vazão (SMV) durante o envase. Rio de Janeiro: PUC-Rio; 2005.