APLICATIVO DE DETERMINAÇÃO DOS PERFIS DE VELOCIDADE E TEMPERATURA NO RESFRIAMENTO ACELERADO DE CHAPAS GROSSAS
SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES
Santos, Antônio Adel dos; Giacomin, Cristóvão Nery
http://dx.doi.org/10.4322/tmm.2014.035
Tecnol. Metal. Mater. Min., vol.11, n3, p.236-243, 2014
Resumo
O objetivo do trabalho foi desenvolver e aplicar modelos matemáticos para determinação dos perfis de velocidade e temperatura de chapas processadas por resfriamento acelerado, na Linha de Chapas Grossas da Usiminas em Ipatinga. Os modelos foram desenvolvidos com base na representação matemática/numérica dos fenômenos físicos envolvidos, tendo sido validados com dados de produção de 3334 chapas. Considerando-se tais modelos, os aços processados e os parâmetros de configuração da Linha da Usiminas, foi construído um aplicativo em Visual Basic, dotado de fácil acesso ao usuário. Com isso, são gerados os perfis de temperatura na espessura e ao longo do tempo para qualquer grau de aço e dimensional do laminado, possibilitando ajustes nos modelos de controle online de processo. Além disso, o aplicativo de simulação tem sido muito útil no desenvolvimento de novos graus de aço, uma vez que as variáveis de processo podem ser relacionadas à evolução térmica, que afeta diretamente as propriedades mecânicas.
Palavras-chave
Resfriamento acelerado, Simulação matemática, Chapas grossas.
Abstract
The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.
Keywords
Accelerated cooling, Mathematical simulation, Heavy plates.
Referências
1. Tsukada K, Matsumoto K, Hirabe K, Takeshige K. Application of on-line accelerated cooling (OLAC) to steel plate. In: Proceedings of the 23rd Mechanical Working and Steel Processing Conference; 1981; Pittsburgh, EUA. Englewood: AIME; 1981. p. 347-370.
2. Gräf MK, Hillenbrand HG, Peters PA. Accelerated cooling of plate for high-strength large-diameter pipe. In: Proceedings of the 4th International Steel Rolling Conference; 1987; Deauville, França. Maizières-lès Metz: IRSID ATS; 1987. p. 507-516.
3. Willmote S, Noville JF. The multi-purpose interrupted cooling process in operation in Clabecq Plate Mill. In:Proceedings of the Symposium on the Accelerated Cooling of Steel; 1985; Pittsburgh, EUA. Englewood: AIME; 1985. p. 181-194.
4. Ludwig B. Systems for the accelerated cooling of plates. Metallurgical Plant and Technology. 1988;16:10-17.
5. Ouchi C. Development of steel plates by intensive use of TMCP and direct quenching process. ISIJ International. 2001;14(6):542-553. http://dx.doi.org/10.2355/isijinternational.41.542
6. Wang SC, Chiu FJ. Establishment of TMCP process in the plate mill of CSC. In: Proceedings of the Accelerated Cooling/Direct Quenching Steels; 1997; Indianapolis, EUA. Michigan: ASM International; 1997. p. 77-86.
7. Evans JF, Clark MT. Plate cooling: technologies and market requirements. AISE Steel Technology. 2002;79(6):49-53.
8. Schmidt R, Dehmel R, Horn G. Latest technologies in plate cooling and their benefit in plate production. Revue de Métallurgie. 2008;105(5):280-285. http://dx.doi.org/10.1051/metal:2008041
9. Bodnar RL, Shen Y, Lin M, Elwood DW, Feher FC, Roe GJ. Accelerated cooling on Burns Harbor’s 160” plate mill. In: Proceedings of the Accelerated Cooling/Direct Quenching Steels; 1997; Indianapolis, EUA. Michigan: ASM International; 1997. p. 3-13.
10. Santos AA, Schiavo CP, Giacomin CN. Simulação computacional do processo de reaquecimento de placas em fornos de viga móvel. Tecnologia em Metalurgia e Materiais. 2008;5(1):35-39. http://dx.doi.org/10.4322/tmm.00501007
11. Giacomin CN, Santos AA, Souza AL. Análise dos processos de laminação a quente na Usiminas via simuladores computacionais. Tecnologia em Metalurgia e Materiais. 2009;6(1):31-35. http://dx.doi.org/10.4322/tmm.00601006
12. Santos AA, Giacomin CN. Mathematical simulation of plate rolling at Usiminas: a tool for process enhancement. In: Anales de la 18ª Conferencia de Laminación; 2010; Rosario, Argentina. Buenos Aires: Instituto Argentino de Siderurgia; 2010.
13. Bingxing W, Zhaodong W, Guodong W. Research of the new generation TMCP technologies for high performance steel plates. In: Proceedings of the 6th European Rolling Conference; 2013; Venice, Itália. Milano: Associazione Italiana de Metallurgia; 2013.
14. Chalmers M, Robinson I, Samanta S, Hulley M. Control of plate themomechanical properties using MULPIC plate cooling technology. In: Proceedings of the 6th European Rolling Cionference; 2013; Venice, Itália. Milano: Associazione Italiana de Metallurgia; 2013.
15. The British Iron and Steel Association. Physical constants of some commercial steels at elevated temperatures. London: Butterworths; 1953.
16. Carnahan B, Luther HA, Wilkes JO. Applied numerical methods. New York: John Wiley & Sons; 1969.
17. Patankar SV. Numerical heat transfer and fluid flow. New York: McGraw-Hill; 1980.
18. Panjkivic V, Gloss R. Fast dynamic heat and mass balance model of walking beam reheat furnace with two-dimensional slab temperature profile. Ironmaking and Steelmaking. 2012;39(3):190-209. http://dx.doi.org/10.1179/1743281211Y.0000000081
19. Incropera FP, De Witt DP. Fundamentos de transferência de calor e massa. Rio de Janeiro: LTC; 2003. http://dx.doi.org/10.1179/1743281211Y.0000000081
20. Goldbarg MC, Luna HPL. Otimização combinatória e programação linear: modelos e algoritmos. Rio de Janeiro: Campus; 2005.