Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/tmm.2014.042
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

NON-UNIFORM WATER FLUX DENSITY APPROACH APPLIED ON A MATHEMATICAL MODEL OF HEAT TRANSFER AND SOLIDIFICATION FOR A CONTINUOUS CASTING OF ROUND BILLETS

DISTRIBUIÇÃO NÃO-UNIFORME DA VAZÃO ESPECÍFICA DE ÁGUA APLICADA AO MODELO MATEMÁTICO DE TRANSFERÊNCIA DE CALOR E SOLIDIFICAÇÃO DO LINGOTAMENTO CONTÍNUO DE BARRAS CILÍNDRICAS

Assunção, Charles Sóstenes; Tavares, Roberto Parreiras; Oliveira, Guilherme

Downloads: 0
Views: 924

Abstract

In the present work, the water flux densities of nozzles with flat jet and full cone jet were experimentally measured using an apparatus in industrial scale that reproduces the secondary cooling of the continuous casting of round billets of Vallourec Tubos do Brasil. A mathematical model for heat transfer and solidification for the continuous casting of round billets was developed applying the experimental water flux density profile, establishing a non-uniform water distribution approach. The mathematical model was validated by experimental measurements of the billet superficial temperature, performed at the industrial plant. The results of the mathematical model using both uniform and non-uniform water flux density approaches were compared. The non-uniform water distribution approach enabled to identify important variations of the heat transfer coefficients and the billet temperatures, especially in the first cooling zone, and to assess more accurately the local effects of the water distribution on the thermal behavior of the strand. The non-uniform water flux density approach applied to the mathematical model was a useful and more accurate tool to improve the comprehension of the thermal behavior of the steel along the secondary cooling.

Keywords

Water flux density, Heat transfer coefficient, Secondary cooling, Mathematical model.

Resumo

As vazões específicas de água de bicos spray com jato do tipo leque e cone cheio foram medidas experimentalmente usando um aparato em escala industrial que reproduz o resfriamento secundário do lingotamento contínuo de barras cilíndricas da Vallourec Tubos do Brasil. Um modelo matemático da transferência de calor e solidificação foi desenvolvido aplicando o perfil de vazão específica de água obtida experimentalmente, desenvolvendo uma nova abordagem de distribuição não-uniforme de água. O modelo matemático foi validado por medições experimentais de temperatura superficial da barra realizadas na planta industrial. Os resultados do modelo matemático usando as abordagens de distribuição uniforme e não-uniforme de vazão específica de água foram comparados. A abordagem de distribuição não-uniforme de vazão específica de água permitiu identificar importantes variações no coeficiente de transferência de calor e na temperatura superficial da barra, especialmente na primeira zona de resfriamento por spray, e, consequentemente, avaliar de forma mais exata os efeitos localizados na distribuição de água no comportamento térmico do aço. A abordagem de distribuição não-uniforme de vazão específica de água se mostrou uma ferramenta útil e mais acurada para aumentar a compreensão do comportamento térmico do aço ao longo da câmara spray.

Palavras-chave

Vazão específica de água, Coeficiente de transferência de calor, Resfriamento secundário, Modelo matemático.

Referências



1 Sabau A. Measurement of heat flux at metal/mould interface during casting solidification. International Journal of Cast Metals Research. 2006;19(3):188-194. http://dx.doi.org/10.1179/136404606225023390.

2 Hebi Y, Man Y, Dacheng F. 3-D inverse problem continuous model for thermal behavior of mould process based on the temperature measurements in plant trial. ISIJ International. 2006;46(4):539-545. http://dx.doi.org/10.2355/ isijinternational.46.539.

3 Thomas BG. Modeling of continuous casting of steel – past, present and future. Metallurgical and Materials Transactions. 2002;33(6):795-812. http://dx.doi.org/10.1007/s11663-002-0063-9.

4 Lait J, Brimacombe JK, Weinberg F. Mathematical modeling of heat flow in the continuous casting of steel. Ironmaking & Steelmaking. 1974;2:90-97.

5 Brimacombe JK. Design of continuous casting machines based o heat-flow analysis: state-of-the-art review. Canadian Metallurgical Quartely. 1976;15:17-28.

6 Spuy D, Craig I, Pistorious P. An optimization procedure for the secondary cooling zone of a continuous billet caster. Journal of the South African Institute of Mining and Metallurgy. 1999;1:49-54.

7 Petrus B, Zheng K, Zhou X, Thomas BG, Bentsman J. Real-time, model-based spray-cooling control system for steel continuous casting. Metallurgical and Materials Transactions. 2011;42(1):87-103. http://dx.doi.org/10.1007/s11663- 010-9452-7.

8 Choudhary S, Mazumdar D, Ghosh A. Mathematical Modelling of Heat Transfer Phenomena in continuous casting of steel. ISIJ International. 1993;33(7):764-774. http://dx.doi.org/10.2355/isijinternational.33.764.

9 Ma J, Xie Z, Jia G. Applying of real-time heat transfer and solidification model on the dynamic control system of billet continuous casting. ISIJ International. 2008;48(12):1722-1727. http://dx.doi.org/10.2355/ isijinternational.48.1722.

10 Camisani-Calzolari FR, Craig IK, Pistorious PC. Specification framework for control of the secondary cooling zone in continuous casting. ISIJ International. 1998;38(5):447-453. http://dx.doi.org/10.2355/isijinternational.38.447.

11 Mahapatra R, Brimacombe JK, Samarasekera IV, Walker N, Paterson E, Young J. Mold behavior and its influence on quality in the continuous casting of steel slabs: part I. Industrial trials, mold temperature measurements, and mathematical modeling. Metallurgical Transactions. 1991;22(6):861-874. http://dx.doi.org/10.1007/BF02651163.

12 Kumar S, Meech J, Samarasekera IV, Brimacombe JK, Rakocevik V. Development of intelligent mould for online detection of defects in steel billets. Ironmaking & Steelmaking. 1999;26(4):269-284. http://dx.doi. org/10.1179/030192399677130.

13 Paul A, Pradhan N, Ray A, Bhor P, Mazumdar S, Korath JM. Assessment of heat extraction through slab caster mould. Scandinavian Journal of Metallurgy. 2000;29(4):139-145. http://dx.doi.org/10.1034/j.1600-0692.2000. d01-16.x.

14 Guo L, Wang S, Zhan H, Yao M, Fang D. Mould Heat Transfer in the Continuous Casting of Round Billet. ISIJ International. 2007;47(8):1108-1116. http://dx.doi.org/10.2355/isijinternational.47.1108.

15 Gilles H. Primary and secondary cooling control. In: Cramb A. The Making, Shaping and Treating of Steel. 11th ed. Pittsburgh: AISE Steel Foundation; 2003. vol. 18.

16 Summerfield S, Fraser D. A new heat transfer correlation for impinging zone heat transfer on a hot steel plate. Canadian Metallurgical Quarterly. 2006;45(1):69-78. http://dx.doi.org/10.1179/cmq.2006.45.1.69.

17 Samarasekera IV, Chow C. Continuous casting of steel billets. In: Cramb A. The Making, Shaping and Treating of Steel. 11th ed. Pittsburgh: AISE Steel Foundation; 2003. vol. 17.

18 Tutarova VD, Safonov D, Shapovalov N. Density distribution of the spray from flat spray nozzles in the secondary cooling zone of a continuous caster. Metallurgist. 2012;56(5-6):438-442. http://dx.doi.org/10.1007/s11015-012- 9594-8.

19 Brimacombe J, Samarasekera IV, Lait J. Spray cooling in the continuous casting of steel. In: Brimacombe JK, Samarasekera IV, Lait JE. Continuous Casting: Heat Flow, Solidification and Crack Formation. Chelsea: Warrendale Iron and Steel Society; 1984. p. 109-123.

20 Zheng K, Petrus B, Thomas BG, Bentsman J. Design and implementation of a real- time spray cooling system for a continuous casting of thin steel slabs. In: Association for Iron & Steel Technology. Proceedings of AISTech Steelmaking Conference; 2007 May 7-10; Indianapolis, USA. Warrendale: AIST; 2007. p.1-15.

21 Meng Y, Thomas BG. Heat transfer and solidification model of continuous slab casting: CON1D. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2003;34(5):685-705. http://dx.doi. org/10.1007/s11663-003-0040-y.

22 Wang H, Li G, Lei Y, Zhao Y, Dai Q, Wang J. Mathematical heat transfer model research for the improvement of continuous casting temperature. ISIJ International. 2005;45(9):1291-1296. http://dx.doi.org/10.2355/ isijinternational.45.1291.

23 Patankar SV. Numerical heat transfer and fluid flow. United States: Taylor & Francis; 1980.

24 Flemings M. Solidification processing. New York: McGraw Hill; 1974.

25 Huang X, Thomas BG, Najjar B. Modeling of steel grade transition in continuous slab casting processes. Metallurgical Transactions. B, Process Metallurgy. 1992;23B:379-393.

26 Howe A. Estimation of liquidus temperature for steels. Ironmaking & Steelmaking. 1988;15:134-142.

27 Brimacombe J, Weinberg F, Hawbolt EB. Metallurgical investigation of continuous casting billet moulds. In: Brimacombe JK, Samarasekera IV, Lait JE. Continuous Casting: Heat Flow, Solidification and Crack Formation. Chelsea: Warrendale Iron and Steel Society; 1984. p. 73-84.

28 Ingerslev P, Henein H. An integral boundary approach for 1- and 2-D modeling of ingot reheating and cooling. Ironmaking & Steelmaking. 1997;24:75-85.

29 Hibbins S. Characterization of heat transfer in the secondary cooling of a continuous slab [master dissertation]. Vancouver: University of British Columbia; 1982.

30 El-Bealy M. Monotonic and fluctuated cooling approaches in secondary cooling zones during continuous casting. Canadian Metallurgical Quarterly. 1997;36(1):49-56. http://dx.doi.org/10.1179/cmq.1997.36.1.49.

31 Cho K, Kim B. Numerical analysis of secondary cooling in continuous slab casting. Journal of Materials Science and Technology. 2008;24:389-390.
588696f47f8c9dd9008b4797 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections