Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.0857
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

PRODUÇÃO DE NANOFIBRAS DE CARBONO A PARTIR DE RESÍDUOS DE LUVAS CIRÚRGICAS

PRODUCTION OF CARBON NANOFIBERS FROM SURGICAL GLOVES

Alves, Joner Oliveira; Tenório, Jorge Alberto Soares; Zhuo, Chuanwei; Levendis, Yiannis Angelo

Downloads: 1
Views: 1075

Resumo

O látex tem sido aplicado em diversos produtos, desde material hospitalar a balões de festas, acarretando em um grande volume de resíduos deste polímero. Neste trabalho foi estudado o reaproveitamento de resíduos de látex como matéria-prima para produção de nanofibras de carbono. Para tanto, amostras de luvas cirúrgicas de látex foram incineradas em um forno elétrico sob uma temperatura de 1000 °C e atmosfera controlada com adições de jatos de O2 e N2 . O efluente da queima foi submetido a um filtro de SiC e repassado a um segundo forno mantido a 1000 °C. Telas de aço inoxidável AISI 304 foram dispostas no forno secundário para atuarem como catalisador. Partículas de carbono sólido foram formadas na superfície da tela catalisadora. A microscopia eletrônica de varredura foi empregada para verificar a microestrutura das partículas produzidas. Os resultados mostraram a formação de nanofibras de carbono com comprimentos da ordem de 50 µm e diâmetros entre 80 e 200 nm. Outra estrutura formada apresentou características semelhantes da grafita.

Palavras-chave

Látex, Catálise, Combustão, Nanomateriais.

Abstract

The latex has been used in several products, from hospital materials to balloons party, generating a large amount of wastes from this polymer. This study investigated the reuse of waste latex as raw material to produce carbon nanofibers. For this purpose, latex samples from surgical gloves were incinerated in an electric furnace at temperature of 1000 °C, and atmosphere controlled by additions of O2 and N2 jets. The combustion effluent was subjected to a SiC filter and transferred to a second furnace maintained at 1000 °C. AISI 304 stainless steel meshes were introduced in the second furnace in order to work as a catalyst. Solid carbon particles were formed on the surface of the metal catalyst. The scanning electron microscopy was used to characterize the microstructure of the produced particles. Results showed the formation of carbon nanofibers with lengths of about 50 micron and diameters in the range of 80-200 nm. Another formed structure has characteristics similar of the graphite.

Keywords

Latex, Catalysis, Combustion, Nanomaterials.

Referências

1 Rippel MM, Bragança FC. Borracha natural e nanocompósitos com argila. Quimica Nova. 2009;32(3):818-826.

2 Caponero J, Tenorio JAS, Levendis YA, Carlson J. Emissions from batch combustion of waste tire chips: the afterburner effect. Energy & Fuels. 2003;17:225-239.

3 Spinacé MAS, De Paoli MA. A tecnologia da reciclagem de polímeros. Quimica Nova. 2005;28(1):65-72.

4 Lucchese AM, Marzorati L. Catálise de transferência de fase. Quimica Nova. 2000;23(5):641-652.

5 Hernadi K, Fonseca A, Nagy JB, Siska A, Kiricsi I. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A. 2000;199:245-255.

6 Alves JO, Tenório JAS, Zhuo C, Levendis YA. Use of stainless steel AISI 304 for catalytic synthesis of carbon nanomaterials from solid wastes. Journal of Materials Research and Technology. 2012;1(3):128-133.

7 Zarbin AJG. Química de (nano)materiais. Quimica Nova. 2007;30(6):1484-1490.

8 Pitkethly MJ. Nanoparticles as building blocks. Nano Today. 2003;36:36-42.

9 American Society for Testing and Materials – ASTM. ASTM E2016-06: standard specification for industrial woven wire cloth. West Conshohocken: ASTM International; 2006.

10 Vander Wal RL, Hall LJ, Berger GM. Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst. The Journal of Physical Chemistry B. 2002;106:13122-13132.

11 Vieira R, Pham-Huu C, Keller N, Ledoux MJ. Novos materiais à base de nanofibras de carbono como suporte de catalisador na decomposição da hidrazina. Quimica Nova. 2003;26(5):665-669.

12 Zabetta EC, Hupa M. Gas-born carbon particles generated by combustion: a review on the formation and relevance. Finland: Biskopsgatan8; 2005. Report 05-01.

13 Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters. 1964;4:89-90.

14 Baker RTK, Harris PS, Thomas RB, Waite RJ. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. Journal of Catalysis. 1973;30(1):86-95.

15 Baker RTK. Catalytic growth of carbon filaments. Carbon. 1989;27(3):315-323.

16 Alves JO, Zhuo C, Levendis YA, Tenório JAS. Analysis and control of light hydrocarbon gases in the pyrolysiscombustion process of several solid wastes. In: Proceedings of the 140th TMS Annual Meeting & Exhibition; 2011 Feb 27 - Mar 03; San Diego, EUA. Warrendale, EUA: EPD; 2011. 8 p.

17 Zhuo C, Alves JO, Tenório JAS, Levendis YA. Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Industrial & Engineering Chemistry Research. 2012;51:2922-2930.

18 Alves J. O., Zhuo C., Levendis Y. A., Tenório J. A. S. Synthesis of nanomaterials using post-consumer PET bottles as raw material. Tecnologia em Metalurgia e Materiais. 2012;9(1):59-63.

19 Alves JO, Zhuo C, Levendis YA, Tenório JAS. Catalytic conversion of wastes from the bioethanol production into carbon nanomaterials. Applied Catalysis B: Environmental. 2011;106(3-4):433-444.

20 Alves JO, Zhuo C, Levendis YA, Tenório JAS. Microstructural analysis of carbon nanomaterials produced from pyrolysis/combustion of styrene-butadiene-rubber (SBR). Materials Research. 2011;14(4):499-504.

21 Alves JO. Síntese de nanotubos de carbono através do uso do bagaço da cana-de-açúcar como matéria-prima. In: UNESCO, MBC, RECyT, MERCOSUL, CNPq, organizadores. Nanotecnologia para o mercosul: edição 2010 do prêmio mercosul de ciência e tecnologia. Brasília: UNESCO; 2010. v. 1, p. 57-74.

22 Tessonnier J-P, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R, et al. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon. 2009;47:1779-1798.

23 Dresselhaus MS, Dresselhaus G, Surihara K, Spain IL, Goldberg HA. Graphite fibers and filaments. Berlin: Springer; 1988.
588697077f8c9dd9008b47e8 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections