ESTUDO TERMODINÂMICO DA RECUPERAÇÃO DE COBRE UTILIZANDO RESINA QUELANTE PARA DIFERENTES ESTADOS DE OXIDAÇÃO DO FERRO
THERMODYNAMIC STUDY OF COPPER RECOVERY USING CHELATING RESIN FOR DIFFERENTS IRON OXYDATION STATES
Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório
Resumo
Um dos maiores problemas na recuperação de metais a partir do minério laterítico de níquel é a presença de Fe(III), em concentrações superiores a 55%, o que prejudica técnicas de separação no processo hidrometalúrgico. Estudos cinéticos mostram que, a recuperação de metais é maior para o ferro presente na solução no estado de oxidação +2 do que para ferro no estado de oxidação +3. Contudo, estudos termodinâmicos para avaliar o efeito do estado de oxidação do ferro no processo de separação são pouco explorados na literatura. Desta forma, o presente trabalho teve por objetivo estudar a termodinâmica no processo de recuperação de cobre utilizando a técnica de troca-iônica utilizando resina quelante. O efeito da temperatura foi avaliado entre 25°C e 60°C. As amostras foram analisadas através de espectroscopia de raios-X. Resultados mostram que a recuperação do cobre foi maior para solução com presença de Fe(II), e que a temperatura diminuiu a eficiência de recuperação de cobre.
Palavras-chave
Abstract
The main problem of metals recovery from nickel laterite ore is the presence of Fe(III), in concentrations higher than 55%, which harms separation techniques in hydrometallurgical process. Kinetics studies shows that metals recovery is higher when iron is present in solution in oxidation state +2 than iron in oxidation state +3. However, thermodynamics studies to evaluate the effect of iron oxidation state in separation process is little explored in the literature. Therefore, the aim of this work is to study thermodynamics in the recovery process of copper using ion exchange technique by chelating resin. The effect of temperature was studied between 25°C and 60°C, and samples were analyzed in X-ray spectroscopy. Results shows that copper recovery was higher for solution with Fe(II), and temperature decreased the recovery copper effectiveness.
Keywords
Referências
1 Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Extractive metallurgy of nickel, cobalt and platinum-group metals [Internet]. Oxford: Elsevier; 2011 [acesso em 17 jul. 2018]. 583 p. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/B9780080968094100012
2 Abbasi P, McKevitt B, Dreisinger DB. The kinetics of nickel recovery from ferrous containing solutions using an Iminodiacetic acid ion exchange resin. Hydrometallurgy. 2016;2018(175):333-339. http://dx.doi.org/10.1016/j.hydromet.2017.11.002.
3 Jiménez Correa MM, Aliprandini P, Silvas FPC, Tenório JAS, Dreisinger D, Espinosa DCR. Nickel and copper adsorption from acidic sulfate medium by ion exchange. In: Proceedings of the Conference of Metallurgists Hosting World Gold & Nickel Cobalt. Westmount: Canadian Institute of Mining, Metallurgy and Petroleum; 2017.
4 Vaughan J, Dieters C, Fu W, Byrne K. Properties of Lewatit® TP272, a commercial solvent impregnated cation exchange resin for cobalt recovery. Minerals Engineering. 2016;88:2-8. http://dx.doi.org/10.1016/j.mineng.2015.07.005.
5 Jackson E. Hydrometallurgical extraction and reclamation. 1986 [acesso em 17 jul. 2018]. 266 p. Disponível em: https://books.google.com/books?id=fPtsNAAACAAJ
6 Havlík T. Hydrometallurgy: principles and application. Vol. 61. Cambridge: Cambridge International Science Publishing Limited; 2001 [acesso em 17 jul. 2018]. 551 p. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0304386X01001785
7 Moldoveanu S, David V. Solvent extraction. In: Moldoveanu SC, David V. Modern sample preparation for chromatography. Elsevier; 2015 [acesso em 17 jul. 2018]. p. 131-189. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/B9780444543196000062
8 Abrão A. Operações de troca iônica. São Paulo: Instituto de Pesquisas Energéticas e Nucleares - CNEN/SP; 2014. 201 p.
9 Inamuddin ML. Ion exchange technology I. Vol. 10. Netherlands: Springer; 2012 [acesso em 17 jul. 2018]. p. 350. Disponível em: http://www.degruyter.com/doi/10.1524/zpch.1957.10.5_6.350
10 Botelho Junior AB, Correa MMJ, Espinosa DCR, Tenório JAS. Influência do Fe(III) no lixiviado de rejeito de níquel no processo de troca-iônica. Tecnologia em Metalurgia, Materiais e Mineração. 2018;15:322-326. http://dx.doi.org/10.4322/2176-1523.1392.
11 Botelho Junior AB, Espinosa DCR, Dreisinger D, Tenório JAS. Effect of pH to recover Cu(II), Ni(II) and Co(II) from nickel laterite leach using chelating resins. Tecnologia em Metalurgia, Materiais e Mineração. 2019;16:135-140. http://dx.doi.org/10.4322/2176-1523.20191575.
12 Jiménez Correa MM, Aliprandini P, Tenório JAS, Espinosa DCR. Precipitation of metals from liquor obtained in nickel mining. In: Kirchain, R. E., Blanpain, B., Meskers, C., Olivetti, E., Apelian, D., Howarter, J., et al., editors. REWAS 2016. Cham: Springer International Publishing; 2016. p. 333-338. http://dx.doi.org/10.1007/978-3-319-48768-7_52.
13 Jahromi PSA. Application of an ion exchange loading correlation for nickel recovery from a ferrous containing solution. Vancouver: The University of British Columbia; 2014.
14 Botelho Junior AB. Recuperação de níquel e cobalto a partir de lixiviado de níquel laterítico utilizando resinas quelantes e processo de pré-redução. São Paulo: Universidade de São Paulo; 2019. http://dx.doi.org/10.11606/D.3.2019.tde-25032019-091140.
15 Botelho Junior AB, Jiménez Correa MM, Espinosa DCR, Dreisinger D, Tenório JAS. Recovery of Cu(II) from nickel laterite leach using prereduction and chelating resin extraction: Batch and continuous experiments. Canadian Journal of Chemical Engineering. 2019;97:924-929. http://dx.doi.org/10.1002/cjce.23306.
16 Botelho Junior AB, Vicente AA, Espinosa DCR, Tenório JAS. Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Separation Science and Technology. 2019;1-11. http://dx.doi.org/10.1080/01496395.2019.1574828.
17 Botelho Junior AB, Espinosa DCR, Dreisinger D, Tenório JAS. Recovery of nickel and cobalt from nickel laterite leach solution using chelating resins and pre‐reducing process. Canadian Journal of Chemical Engineering. 2019;97:1181-1190. http://dx.doi.org/10.1002/cjce.23359.
18 Lanxess Energizind Chemistry. Product information - Lewatit® TP 207. USA: Lanxess Energizind Chemistry; 2011 [acesso em 17 jul. 2018]. 4 p. Disponível em: http://www.lenntech.com/Data-sheets/Lewatit-TP-207-L.pdf
19 Zainol Z, Nicol MJ. Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748. Hydrometallurgy. 2009;99:175-180. http://dx.doi.org/10.1016/j.hydromet.2009.08.004.
20 Rudnicki P, Hubicki Z, Kołodyńska D. Evaluation of heavy metal ions removal from acidic waste water streams. Chemical Engineering Journal. 2014;252:362-373. http://dx.doi.org/10.1016/j.cej.2014.04.035.
21 Morcali MH, Zeytuncu B, Baysal A, Akman S, Yucel O, Hakan M, et al. Adsorption of copper and zinc from sulfate media on a commercial sorbent. Journal of Environmental Chemical Engineering. 2014;2:1655-1662. http://dx.doi.org/10.1016/j.jece.2014.07.013.
22 Gando-Ferreira LM, Romão IS, Quina MJ. Equilibrium and kinetic studies on removal of Cu2+ and Cr3+ from aqueous solutions using a chelating resin. Chemical Engineering Journal. 2011;172:277-286. http://dx.doi.org/10.1016/j.cej.2011.05.105.
23 Dinu MV, Comǎniţǎ ED, Drǎgan ES. Kinetic study on heavy metals adsorption by iminodiacetate chelating resins. Environmental Engineering and Management Journal. 2012;11:1587-1594.
24 Zainol Z, Nicol MJ. Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings. Hydrometallurgy. 2009;96:283-287. http://dx.doi.org/10.1016/j.hydromet.2008.11.005.
25 Liu F, Li L, Ling P, Jing X, Li C, Li A, et al. Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics. Chemical Engineering Journal. 2011;173:106-114. http://dx.doi.org/10.1016/j.cej.2011.07.044.
26. Perez ID. Recuperação de cobre de uma solução sintética baseada no licor de lixiviação atmosférica de minério limonítico de níquel por troca iônica utilizando a resina quelante Dowex XUS43605. São Paulo: Universidade de São Paulo; 2018.