Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.0881
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ASSESSMENT OF CO2 MITIGATION POTENTIAL, BIOMASS USE AND PLANTATION AREAS TO SUSTAIN CHARCOAL-IRONMAKING

Feliciano-Bruzual, Cristobal

Downloads: 0
Views: 285

Abstract

Ironmaking is among the most carbon intensive industries in the world, metallurgists are researching for options to replace the use of coke and coal by renewable fuels as such biomass chars. In this respect, the re-introduction of charcoal in blast furnaces appears as feasible alternative to mitigate the CO2 emission in the process. Nevertheless, for the production of charcoal large extensions of land are required for the generation of wood. In this regard, the present work aims to contribute by assessing the actual CO2 mitigation potential, as well as the charcoal and plantation areas associated with an increase of charcoal use in blast furnaces. The first sections build on the technical aspects of charcoal blast furnace and the ecological limitations of charcoal production. The methodology shows scenarios in which fossil fuels are replaced by 10-25% charcoal. The results show that the use of charcoal may prevent the generation of 229-572 MMt CO2 in the ironmaking process, and to achieve this ambitious goal 46-115 MM t charcoal would be required, however plantation areas of 13-33 MM ha should be dedicated to the generation of biomass. Based on the results, it is considered challenging the further proliferation of 100% Charcoal-BF outside Brazil.

Keywords

Charcoal, Blast furnace, Bio-PCI, CO2 emissions, Sustainability.

Referências

1 Gupta RC. Woodchar as a sustainable reductant for ironmaking in the 21st century. Mineral Processing and Extractive Metallurgy Review. 2003;24(3-4):203-231. http://dx.doi.org/10.1080/714856822.

2 Gurumurti K, Raturi DP. Energy plantation for power generation. Scientific Reports. 1982;19:458.

3 Kumar M, Gupta RC. Properties of acacia and eucalyptus woods. Journal of Materials Science Letters. 1992;11(21):1439-1440. http://dx.doi.org/10.1007/BF00729656.

4 Alvaro L. Theory of wood carbonization. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012.

5 Ueda S, Watanabe K, Yanagiya K, Inoue R, Ariyama T. Optimization of biomass utilization for reducing CO2 in ironmaking process. Journal of Iron and Steel Research International. 2009;16:593-599.

6 Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management. 2001;42(11):1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-0.

7 Nascimento R, Almeida A, Olivera E, Jesus A, Moraes A. 18 months of charcoal fines injection into Gusa Nordeste’s (1) blast furnaces. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of the 3rd International Meeting on Ironmaking; 2008 Sept 22-26; São Luis, Brazil. São Luis: ABM; 2008 [cited 2012 Jan 09]. Available at: http://foundrynews.com.br/upload/artigos/18-months-of-charcoal-finesinjection-int51486bae43d81.pdf.

8 Scherer WG, Braga RNB. Brazilian charcoal pig iron production. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012.

9 World Steel Association. Iron production 2012. Brussels: World Steel Association; 2012 [cited 2013 July 11]. Available at: http://www.worldsteel.org/dms/internetDocumentList/statistics-archive/production-archive/iron-archive/iron-annually/Iron-production-December-2014/document/Iron%20production%20December%202012.xls.pdf

10 Gonçalves JL, Manella R, Silva FR. The use of coke and chacoal in APERAM South America. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012.

11 Pfeifer HC, Sousa LG, Silva TT. Design of the charcoal blast furnace differences to the coke BF. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012.

12 News World. POSCO reignites the largest blast furnace in world. Seoul: NewsWorld; 2013 [cited 2014 Feb 11]. Available at: http://newsworld.co.kr/detail.htm?no=937

13 Winter MEL. Forestry in Brazil focused on the production of charcoal. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012.

14 Ng KW, Giroux L, MacPhee T, Todoschuk T. Combustibility of charcoal for direct injection in blast furnace ironmaking. Iron and Steel Technology. 2012;9(3):70.

15 Oliveira C, Dörr J. Marktstudie Brasilien Eisen, Stahl und Aluminiumindustrie. Berlin: Refratechnik; 2013. Unpublished.

16 Mathieson J, Rogers H, Somerville M, Jahanshahi S, Ridgeway P. Potential for the use of biomass in the iron and steel industry. In: Proceedings of the Chemeca 2011: Engineering a Better World; 2011 Sept 18-21; Sydney, Australia. Sydney: Chemeca; 2011.

17 Carneiro ACO. Technological advances of charcoal production. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012.

18 Mathieson J. The potential for utilization of biomass and carbonaceous wastes to replace coal, coke, and coal-based chars in ironmaking and steelmaking. Melbourne: Bluescope Steel Technote; 2010. BSR/N/2010/014. Unpublished.

19 Somerville MA, Davies M, Mathieson JG, Ridgeway P, Jahanshahi S. Addition of renewable carbon to liquid steel: plant trials at onesteel sydney steel mill. In: Proceedings of the Chemeca 2011: Engineering a Better World; 2011 Sept 18-21; Sydney, Australia. Sydney: Chemeca; 2011. p. 907-919.

20 Somerville M, Jahanshahi S, Ridgeway P, Davies M, Mathieson JG. Sustainable carbon in steel making – plant trials at the Sydney steel mill. In: Proceedings of the Sustainable Mining Conference; 2010 Aug 17-19; Kalgoorlie, Australia. Melbourne: The Australasian Institute of Mining and Metallurgy; 2010.

21 MacPhee JA, Gransden JF, Giroux L, Price JT. Possible CO2 mitigation via addition of charcoal to coking coal blends. Fuel Processing Technology. 2009;90(1):16-20. http://dx.doi.org/10.1016/j.fuproc.2008.07.007.

22 Ueda S, Watanabe K, Yanagiya K, Inoue R, Ariyama T. Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace. ISIJ International. 2009;49(10):1505-1512.

23 Lucena D, Medeiros R, Fonseca U, Assis P. Aglomeração de moinha de carvão vegetal e sua possível aplicação em alto-forno e geração de energia. Tecnologia em Metalurgia e Materiais. 2008;4(4):1-6.

24 Babich A, Senk D, Fernandez M. Charcoal behaviour by its injection into the modern blast furnace. ISIJ International. 2010;50(1):81-88.

25 Ueda S, Watanabe K, Yanagiya K, Inoue R, Ariyama T. Optimization of biomass utilization for reducing CO2 in ironmaking process. In: Proceedings of the 5th International Council for Scientific and Technical Information – ICSTI’09; 2009 Oct 19-23; Shanghai, China. Shanghai: ICSTI; 2009. p. 593-599.

26 Demirbaş A. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Conversion and Management. 2001;42(10):1229-1238. http://dx.doi.org/10.1016/S0196-8904(00)00110-2.

27 Nogueira LAH, Coelho ST, Uhlig A. Sustainable charcoal production in Brazil. In: Rose S, Remedio E, Trossero MA, editors. Criteria and indicators for sustainable woodfuels. Rome: FAO; 2009 [cited 2013 Feb 15]. chap. 3, p. 31-46. Available at: http://www.fao.org/docrep/012/i1321e/i1321e00.pdf

28 Ferreira OC, Emission of greenhouse effect gases in the production and use of charcoal in metallurgy. Economy & Energy. 2000 [cited 2013 Mar 14];20(20). Available at: http://ecen.com/eee20/omar20be.htm.

29 Food And Agriculture Organization of the United Nations. Forestry Department. Simple technologies for charcoal making. Rome: FAO; 1983 [cited 2013 Feb 15]. Available at: http://www.fao.org/docrep/x5328e/x5328e00.htm

30 Girard P. Charcoal production and use in Africa: what future? Unasylva. 2002 [cited 2013 Apr 18]. Available at: http://www.fao.org/docrep/005/y4450e/y4450e10.htm

31 Gurumurti K, Raturi DP. Energy plantation for power generation. Scientific Reports. 1982;19:458.

32 Brazilian Association of Forest Plantation Producers. Abraf statistical yearbook, 2013. Base year 2012. Brasília: ABRAF; 2013 [cited 2014 Jan 09]. Available at: http://www.abraflor.org.br/estatisticas.asp.

33 Schmoele P, Lüngen HB, Endemann G. Measures to reduce CO2 and other emissions in the steel industry in Germany and Europe. In: Proceedings of the 5th International Council for Scientific and Technical Information – ICSTI’09; 2009 Oct 19-23; Shanghai, China. Shanghai: ICSTI; 2009. p. 42-50.

34 Sunder S. The ecological, economic and social effects of Eucalyptus. In: Proceedings of the Regional Expert Consultation on Eucalyptus; 1995 Oct. 4-8; Bangkok, Thailand. Bangkok: FAO Regional Office for Asia and the Pacific; 1995 [cited 2013 Oct 18]. Available at: http://www.fao.org/docrep/005/ac777e/ac777e08.htm

35 World Steel Association. Iron production 2011. Brussels: World Steel Association; 2011 [cited 2012 Feb 03]. Available at: http://www.worldsteel.org/statistics/statistics-archive/2011-iron-production.html

36 Nation Master. Production from charcoal plants: countries compared. Woolwich: NationMaster; 2012 [cited 2012 Feb 03]. Available in: http://www.NationMaster.com/graph/ene_cha_pro_fro_cha_pla-energy-charcoal-productionfrom-plants

37 Piketty M-G, Wichert M, Fallot A, Aimola L. Assessing land availability to produce biomass for energy: the case of Brazilian charcoal for steel making. Biomass and Bioenergy. 2009;33(2):180-190 [cited 2015 Feb 21]. Available at: http://www.worldsteel.org/dms/internetDocumentList/iron-stats/2011/Iron-production-2011/document/2011%20iron%20updated%20Feb2012.pdf.

38 Feliciano C, Mathew JA. Bio-PCI a renewable reductant for Blast Furnaces: CO2 mitigation potential and economical assessment. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of 6th International Congress on the Science and Technology of Ironmaking – ICSTI; 2012 Oct 14-18; Rio de Janeiro, Brazil. Rio de Janeiro: ABM; 2012. p. 1913-1927.

39 Gregg JS, Smith SJ. Global and regional potential for bioenergy from agricultural and forestry residue biomass. Mitigation and Adaptation Strategies for Global Change. 2010;15(3):241-262. http://dx.doi.org/10.1007/s11027-0109215-4.
588697007f8c9dd9008b47c9 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections