Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1088
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

INVESTIGAÇÃO EXPERIMENTAL DA TAXA DE RESFRIAMENTO NO PROCESSO DE PRESSHARDENING EM CHAPAS DE GRANDE ESPESSURA EM AÇO 22MNB5

EXPERIMENTAL INVESTIGATION OF THE COOLING RATE IN PRESSHARDENING PROCESS IN SHEET THICK STEEL 22MNB5

Almeida, Diego Tolotti de; Souza, João Henrique Corrêa de; Drunn, Jonathan

Downloads: 2
Views: 1023

Resumo

O objetivo deste estudo é abordar a influência da taxa de resfriamento no processo de presshardening, na caracterização da transformação martensítica e perfil de dureza em chapas de aço 22MnB5 com 8,00mm de espessura. Uma ferramenta com canais de refrigeração foi projetada e fabricada para avaliar a transferência de calor entre o blank (quente) de chapas de aço 22MnB5 e a ferramenta (fria) quando ambas estão em contato mecânico e submetidas a uma pressão de contato e diferentes temperaturas da água nos canais de refrigeração, avaliando desta forma a taxa de resfriamento do processo. Para isto, aqueceu-se as amostras até à temperatura de austenitização de 950°C no intervalo de 5 minutos e posteriormente foram processadas com diferentes temperaturas da água nos canais de refrigeração. Análises metalográficas das amostras foram obtidas através de microscopia eletrônica de varredura (MEV). Propriedades mecânicas foram obtidas através de ensaio de dureza. Os resultados dos ensaios metalográficos e de dureza foram correlacionados com a taxa de transferência de calor e assim, estabelecida uma correlação com o processo de estampagem a quente. Comprovou-se pela análise metalográfica e pelos resultados de dureza que a taxa de resfriamento é afetada pela temperatura da água nos canais de refrigeração, ao passo que as amostras processadas com temperatura da água de 5°C obtiveram as maiores taxas de resfriamento.

Palavras-chave

Estampagem, Conformação a quente, Presshardening, Chapas grossas, 22MnB5.

Abstract

The aim of this study is to approach the influence of the rate of cooling in the process of presshardening, in the characterization of the martensite transformation and profile of hardness in steel plates 22MnB5 with 8,00mm of thickness. A tool with refrigeration canals was projected and manufactured to evaluate the heat transference enters blank (hot) of steel plates 22MnB5 and the tool (cold) when both are in mechanical contact and submitted to a pressure of contact and different temperatures of the water in the refrigeration canals, evaluating in such a way the rate of cooling of the process. For this, was heated the samples until an austenitizing temperature of 950°C, kept during 5 minutes and later processed with different speeds of cooling. Metallography analyses were obtained through electronic microscopy of sweepings (MEV). Mechanical properties were obtained through hardness test. Based on the results of metallography analyses and hardness test, were establishing a correlation with heat transference with hotforming process. Were proven for the metallography analysis and the results of hardness test that the cooling rate is affected by temperature of the water in the refrigeration canals, samples processed with temperature of the water of 5°C obtained the biggest cooling rate.

Keywords

Stamping, Hotforming, Presshardeninig, Thick steel, 22MnB5.

Referências

1 Akerström P. Modeling and simulation of hot stamping [doctoral thesis]. Sweden: Lulea University of Technolog; 2006.

2 Hein P. A global approach of the finite element simulation of hot stamping. Advanced Materials Research. 2005;6-8:763-770.

3 Karbasian H, Tekkaya AE. A review on hot stamping. Journal of Materials Processing Technology, v. 210, p. 2103-2118, 2010.

4 Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchable ultra high strength steels with respect to a FE-based process design. In: Society of Automotive Engineers. SAE World Congress: Innovations in Steel and Applications of Advanced High Strength Steels for Automobile Structures; 2008; Detroit, USA. Warrendale: Warrendale, Penn.: Society of Automotive Engineers. p. 411-423. Paper No. 2008–0853.

5 Hein P. Numerical simulation of the hot stamping of automotive components with USIBOR 1500 P. In: Communicating European Research. EuroPAM 2005 Proceedings; Oct 2005, Potsdam, Germany. 2005. Brussels: Claessens, Michael.. p. 1-17.

6 Hyunwoo SO, Fabbmann D, Hoffmann H, Golle R, Schaper M. As investigation of the clanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. Journal of Materials Processing Technology, v. 212, p. 437-449, 2012.

7 Lechler J, Merklein M. Hot stamping of ultra-strength steels as a key technology for lightweight construction. In: Materials Science & Technology 2008 Conference and Exhibition, MS&T’08. Pittsburgh, Pennsylvania. Warrendale: Current & Associates Inc.; 2008. p. 1698-1709.

8 Wilsius J, Hein P, Kefferstein R. Status and trends of hot stamping of USIBOR 1500P. In: Lehrstuhl für Fertigungstechnologie. Proceedings of the 1st Erlanger Workshop Warmblechumformung; 2006; Erlangen, Germany. Weinheim: Wiley-VCH; 2006. p. 182-201.

9 Gorni AA. Aços avançados de alta resistência: microestrutura e propriedades mecânicas. Corte e Conformação de Metais. 2008;4(44):26-57.

10 Sikora S, Lenze FJ. Hot forming process important parameters for production of high-strength BIW parts. In: IDDRG. Proceedings of the International Deep Drawing Research Group – IDDRG’06; 2006; Porto, Portugal. Porto, Portugal: TIB – Leibniz Information Centre for Science and Technology University Library; 2006. p. 295-301.

11 Li Y, Ying L, Hu PDY, Zhao X, Dai MH. Coupled numerical simulation of hot stamping process and experimental verification. In: AIP Conference Proceedings. Proceedings of the 11th International Conference on Numerical Methods in Industrial Forming Processes; 2013; Shenyang, China. Melville: AIP Publishing; 2013. vol. 1.532, p. 471-477.

12 Lin T, Song H-W, Zhang M, Cheng M, Liu W-J. Cooling systems design in hot stamping tools by a thermal-fluidmechanical coupled approach. Advances in Mechanical Engineering. 2014(6):12.

13 Kirkaldy JS, Venugopalan D. Prediction of microstructure and hardenability in low alloy steels. In: Ferrous Metallurgy Committee of the Metallurgical Society of AIME and the Phase Transformations TA of the Material Science Division of the American Society for Metals. Proceedings of the International Conference on Phase Transformations in Ferrous Alloys; 1983; Philadelphia, USA. Warrendale: Warrendale, Pa.: Metallurgical Society of AIME; 1983. p. 125-148.

14 Li MV, Niebuhr DV, Meekisho LL, Atteridge DG. A computational model for the prediction of steel hardenability. Metallurgical and Materials Transactions. 1998;29B(3):661-672.

15 Steinbeiss H, So H, Michelitsch T, Hoffmann H. Method for optimizing the cooling design of hot stamping tools. Production Engineering Research for Development. 2007:149-155.

16 Kuhn D, Kolleck R. Warmumformung – den hoheren Festigkeiten folgend. MM das Industrie Magazin. 2006;17:86-87.

17 Freieck U. In zwei Wochen zum Serienwerkzeug. Blech. 2007;2:46-47.

18 Fan DW, Kim HS, De Cooman BC-A. Review of the physical metallurgy related to the hot press forming of advanced high strength steel. Steel Research International. 80(3):241-248, 2009.

19 Souza FBP. Simulação numérica do processo de estampagem a quente do aço USIBOR® 1500P. [dissertação de mestrado]. Belo Horizonte: Universidade Federal de Minas Gerais; 2013.
5886970b7f8c9dd9008b47fa tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections