Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191929
Tecnologia em Metalurgia, Materiais e Mineração
ABM Week 2018

EVALUATION OF CREEP BEHAVIOR OF TI-6AL-4V ALLOY WITH THERMAL BARRIER COATING DEPOSITED BY AIR PLASMA SPRAY

AVALIAÇÃO DO COMPORTAMENTO EM FLUÊNCIA DA LIGA TI-6AL-4V COM RECOBRIMENTO COMO FORMA DE BARREIRA TÉRMICA DEPOSITADO POR ASPERSÃO TÉRMICA

Filipe Estevão de Freitas, Adriano Gonçalves dos Reis, Danieli Aparecida Pereira Reis

Downloads: 0
Views: 32

Abstract

Titanium alloys have attractive properties for application in aeronautical components submitted to high temperature. Yttria-stabilized zirconia (YSZ) of thermal barrier coating systems (TBC) have become an alternative to increase the operational lifetime of turbine blades. The aim of this work was to evaluate the creep behavior of Ti-6Al-4V with TBC deposited by air plasma spray. Constant load creep tests were conducted in air on equiaxed Ti-6Al-4V (uncoated) and Ti-6Al-4V with TBC and the experimental parameters related to secondary creep were determined. All the coated samples showed a reduction of secondary creep rate values and, thereafter, higher creep resistance, which could be associated with oxidation protection and thermal insulation provided by the coating. Creep rate analysis suggests that the dominant creep mechanisms in all cases is the dislocation climb.

Keywords

Ti-6Al-4V; Creep behavior; TBC.

Resumo

Ligas de titânio possuem propriedades atrativas para aplicação em componentes aeronáuticos submetidos a altas temperaturas. O revestimento de barreira térmica (TBC) de zircônia estabilizada com ítria (YSZ) tem se tornado uma alternativa para aumentar a vida operacional das palhetas de turbina. O objetivo deste trabalho foi avaliar o comportamento em fluência da liga Ti-6Al-4V com recobrimento TBC depositado por aspersão térmica. Os ensaios foram conduzidos em carga constante e ao ar em amostras de Ti-6Al-4V com estrutura equiaxial com e sem recobrimento TBC e foram determinados os parâmetros experimentais relacionados à fluência secundária. Todas as amostras revestidas mostraram uma redução dos valores da taxa de fluência secundária e, consequentemente, maior resistência à fluência, que pode ser associada à proteção contra oxidação e à barreira térmica fornecida pelo revestimento. A análise da taxa de fluência sugere que o mecanismo de fluência dominante em todos os casos é a escalagem de discordâncias

Palavras-chave

Ti-6Al-4V; Comportamento em fluência; TBC.

Referências

1 Perepezko JH. The hotter the engine, the better. Science. 2009;326(5956):1068-1069.

2 Shifler D. Future research directions to understanding factors influencing advanced high temperature materials. In: Proceedings of the 1st Department of Defense Corrosion Conference; 2009 August 10-14; Gaylord National. Washington DC: Department of Defense; 2009. p. 37-34.

3 Meyers MA, Chawla KK. Princípios de metalurgia mecânica. 2nd ed. São Paulo: Edgard Blücher; 1982. Cap. 14, p. 406-420.

4 Eylon D, Fujishiro S, Postans PJ, Froes FH. High-Temperature titanium alloys: A review. Journal of Metals. 2013;36(11):55-62.

5 Leyens C, Peters M. Titanium and titanium alloys. 3rd ed. Weinheim: Wiley; 2003. 499 p.

6 Zhecheva A, Sha W, Malinov S, Long A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface and Coatings Technology. 2005;200(7):2192-2207.

7 Razavi RS, Gordani GR, Man HC. A review of the corrosion of laser nitrided Ti-6Al-4V. Anti-Corrosion Methods and Materials. 2011;58(3):140-154.

8 Sakai T, Ohashi M, Chiba K, Jonas JJ. Recovery and recrystallization of polycrystalline nickel after hot working. Acta Metallurgica. 1988;36(7):1781-1790.

9 Lee WS, Lin CF. High-temperature deformation behavior of Ti-6Al-4V alloy evaluated by high strain-rate compression tests. Journal of Materials Processing Technology. 1998;75(1-3):127-136.

10 Gurrappa I, Gogia AK. High performance coatings for titanium alloys to protect against oxidation. Surface and Coatings Technology. 2001;139(2–3):216-221.

11 Almeida DS. Estudo de revestimentos cerâmicos sobre substrato metálico obtido por deposição física de vapores por feixe de elétrons para aplicação como barreira térmica [tese]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais; 2005.

12 Evans HE. Oxidation failure of TBC systems: An assessment of mechanisms. Surface and Coatings Technology. 2011;206(7):1512-1521.

13 Schulz U, Leyens C, Fritscher K, Peters M, Saruhan-Brings B, Lavigne O, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Science and Technology. 2003;7(1):73-80.

14 Seo D, Ogawa K, Nakao Y, Miura H, Shoji T. Influence of high-temperature creep stresson growth of thermally grown oxide in thermal barrier coatings. Surface and Coatings Technology. 2009;203(14):1979-1983.

15 Lima CC, Trevisan R. Aspersão térmica. 2nd ed. São Paulo, SP: Artliber; 2007. 152 p.

16 Quadakkers WJ, Shemet V, Sebold D, Anton R, Wessel E, Singheiser L. Oxidation characteristics of a platinized MCrAlY bond coat for TBC systems during cyclic oxidation at 1000 °C. Surface and Coatings Technology. 2005;199(1):77-82.

17 Reis DAP, Moura Neto C, Silva CRM, Barboza MJR, Piorino Neto F. Effect of coating on the creep behavior of the Ti-6Al-4V alloy. Materials Science and Engineering A. 2008;486(1-2):421-426.

18 Oliveira AC, Oliveira RM, Reis DAP, Carreri FC. Effect of nitrogen high temperature plasma based ion implantation on the creep behavior of Ti-6Al-4V alloy. Applied Surface Science. 2014;311:239-244.

19 Reis DAP, Reis AG, Yogi LM, Silva MM, Ueda M, Zepka S. Comparation between Laser Surface Nitriding and Nitrogen Plasma Immersion Ion Implantation (N-PIII) on Creep Behavior of Ti-6Al-4V Alloy. Materials Science Forum. 2014;802:462-466.

20 Sugahara T, Martins GV, Montoro FE, Merij Neto A, Massi M, Silva Sobrinho AS, et al. Creep behavior evaluation and characterization of SiC film with Cr interlayer deposited by HiPIMS in Ti-6Al-4V alloy. Surface and Coatings Technology. 2017;309:410-416.

21 ASTM International. ASTM B265: Standard specification for titanium and titanium alloy strip, sheet, and plate. West Conshohocken: ASTM; 2015.

22 ASTM International. ASTM E139: Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials. West Conshohocken: ASTM; 2011.

23 Evans RW, Wilshire B. Introduction to creep. London: The Institute of Materials; 1993. 115 p.

24 Warren J, Hsiung LM, Wadley HNG. High temperature deformation behavior of physical vapor deposited Ti-6Al-4V. Acta Metallurgica et Materialia. 1995;43(7):2773-2787.

25 Reis AG, Reis DAP, Moura Neto C, Barboza MJR, Oñoro J. Creep behavior and surface characterization of a laser surface nitrided Ti-6Al-4V alloy. Materials Science and Engineering A. 2013;577:48-53.

26 Palehan I, Rosen A. History dependent creep of Ti-6Al-4V alloy. Metal Science. 1978;12(3):163-165.

5d8133e80e88250314bbec00 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections