Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20202026
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Caracterização tecnológica de catalisadores automotivos desativados visando o aproveitamento de Pt, Pd e Rh

Technological characterization of automotive catalysts disabled for Pt, Pd, and Rh recovery

Renan Teixeira Baia, Kleber Bittencourt Oliveira, Emanuel Negrão Macêdo, Jéssica Alves da Silva

Downloads: 0
Views: 80

Resumo

A utilização de catalisadores automotivos vem aumentando nas últimas décadas. Com as rigorosas legislações de controle de emissões de gases poluentes, o número de catalisadores que são descartados também cresce, gerando enorme volume de resíduos, que podem ser uma fonte para a mineração urbana. O objetivo deste trabalho é caracterizar catalisadores automotivos desativados, em termos da composição mineralógica, estrutural e elementar, quantitativa e qualitativamente. As análises foram realizadas em granulometria por difração à laser, difratômetro de raios X (DRX), microscópio eletrônico de varredura com espectroscopia por dispersão de energia de raios X (MEV/EDS), espectroscopia Raman e espectrometria de emissão óptica em plasma com acoplamento indutivo (ICP-OES). O catalisador automotivo estudado apresentou fissuras e contaminantes como P, Ca, F, C e S, acentuando o processo de desativação. A maior composição identificada foi de cordierita, correspondendo 40,17%. Os metais catalíticos do grupo platina identificados no catalisador automotivo foram, Pd (0,92%), Pt (0,03%) e Rh (0,17%).

Palavras-chave

Catalisadores automotivos; Caracterização; Cordierita; Grupo platina.

Abstract

The use of automotive catalysts has been increasing in recent decades. With the strict regulations governing the emission of polluting gases, the number of catalysts that are discarded also grows, generating enormous volume of waste, which can be a source for urban mining. The objective of this work is to characterize deactivated automotive catalysts in terms of mineralogical, structural and elemental composition, quantitatively and qualitatively. The analyzes were performed in granulometry by laser diffraction, X-ray diffractometer (XRD), scanning electron microscope with X-ray energy dispersion spectroscopy (SEM / EDS), Raman spectroscopy and inductive coupling plasma optical spectrometry (ICP-OES). The studied automotive catalyst presented cracks and contaminants such as P, Ca, F, C and S, accentuating the deactivation process. The largest composition identified was cordierite, corresponding to 40.17%. The catalysts of the platinum group identified in the automotive catalyst were, Pd (0.92%), Pt (0.03%) and Rh (0.17%).

Keywords

Automotive catalysts; Characterization; Cordierite; Platinum group.

Referências

1 Heck RM, Farrauto RJ. Automobile exhaust catalysts. Applied Catalysis A, General. 2001;221(1):443-457. http://dx.doi.org/10.1016/S0926-860X(01)00818-3.

2 Russell A, Epling WS. Diesel oxidation catalysts. Catalysis Reviews. 2011;53(4):337-423. http://dx.doi.org/10.1080/01614940.2011.596429.

3 Kato A, Yamashita H, Kawagoshi H, Matsuda S. Preparation of Larnthanum β‐alumina with high surface area by coprecipitation. Journal of the American Ceramic Society. 1987;70(7):7. http://dx.doi.org/10.1111/j.1151-2916.1987. tb05694.x.

4 Wallington TJ, Kaiser EW, Farrell JT. Automotive fuels and internal combustion engines: a chemical perspective. Chemical Society Reviews. 2006;35(4):335-347. http://dx.doi.org/10.1039/b410469m.

5 Moldovan M, Milagros Gómez M, Antonia Palacios M. Determination of platinum, rhodium and palladium in car exhaust fumes. Journal of Analytical Atomic Spectrometry. 1999;14(8):1163-1169.

6 Koltsakis GC, Stamatelos AM. Catalytic automotive exhaust aftertreatment. Progress in Energy and Combustion Science. 1997;23(1):1-39.

7 Lassi U. Deactivation correlations of Pd/Rh three-way catalysts designed for Euro IV emission limits: effect of ageing atmosphere, temperature and time [dissertation]. Oulu: University of Oulu; 2003.

8 Fernandes DM, Scofield CF, Alcover A No, Cardoso MJB, Zotin FMZ. Thermal deactivation of Pt/Rh commercial automotive catalysts. Chemical Engineering Journal. 2010;160(1):85-92. http://dx.doi.org/10.1016/j.cej.2010.03.013.

9 Carol LA, Newman NE, Mann GS. High temperature deactivation of three-way catalyst. Journal of Fuels and Lubricants. 1989;98(4):731-744.

10 Zotin FMZ, Gomes ODFM, Oliveira CH, Alcover A No, Cardoso MJB. Automotive catalyst deactivation: case studies. Catalysis Today. 2005;107:157-167. http://dx.doi.org/10.1016/j.cattod.2005.07.111.

11 Batista CH, Dutra AJB. Caracterização de catalisadores automotivos novos e usados visando à reciclagem dos metais. Revista Matéria. 2013;18(4):1451-1458.

12 Fernandes DM, Scofield CF, Alcover A No, Cardoso MJB, Zotin FMZ, Batista CH, et al. The influence of temperature on the deactivation of commercial Pd/Rh automotive catalysts. Environment and Progress. 2009;87(5):315-322.

13 Borisov OV, Coleman DM, Oudsema KA, Carter RO 3rd. Determination of platinum, palladium, rhodium and titanium in automotive catalytic converters using inductively coupled plasma mass spectrometry with liquid nebulization. Journal of Analytical Atomic Spectrometry. 1997;12(2):239-246.

14 Likhacheva AY, Goryainov SV, Krylov AS, Bul’bak TA, Prasad PS. Raman spectroscopy of natural cordierite at high water pressure up to GPa. Journal of Raman Spectroscopy. 2012;43(4):559-563.

15 Majumdar AS, Mathew G. Raman-infrared (IR) spectroscopy study of natural cordierites from Kalahandi, Odisha. Journal of the Geological Society of India. 2015;86(1):80-92.

16 You J, Jiang G, Hou H, Chen H, Wu Y, Xu K. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates. Journal of Raman Spectroscopy. 2005;36(3):237-249.

17 Graham G, Weber W, McBride J, Peters C. Raman investigation of simple and complex oxides of platinum. Journal of Raman Spectroscopy : JRS. 1991;22(1):1-9.

18 McArthur DP. Deposition and distribution of lead, phosphorus, calcium, zinc, and sulfur poisons on automobile exhaust NOx catalysts. Catalysts for the Control of Automotive Pollutants. 2009;143:85-102.

19 Angelidis TN, Sklavounos SA. A SEM-EDS study of new used automotive catalysts. Applied Catalysis A, General. 1995;133(1):121.


Submetido em:
13/02/2019

Aceito em:
15/02/2020

5fc8fb580e8825666a23ae0f tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections