HIGH TOUGHNESS, 510 MPA STRENGTH CLASS MICROALLOYED STEEL PLATES WITH PRODUCED BY T.M.C.P. IN GERDAU OURO BRANCO
PRODUÇÃO DE CHAPAS GROSSAS DA CLASSE DE 510 MPA E ALTA TENACIDADE, PRODUZIDAS ATRAVÉS DE TRATAMENTO TERMOMECÂNICO DE AÇO MICROLIGADO, NA GERDAU OURO BRANCO
Romeu Thomaz Viana Júnior, José Herbert Dolabela da Silveira, Rafael Abreu Fraga, Afonso Cardoso da Silva, Mateus Pedro Medeiros da Silva, Emanuelle Garcia Reis, Ricardo José de Faria
Abstract
The Gerdau Ouro Branco Works has started to develop high complexity products three years after the implementation of its new heavy plate rolling mill. The evolution of its learning curve is increasingly challenging since products are being developed to their highest grades. This paper aims to present the first results of the development of steels of the strength class of 510 MPa produced by TMCP (Thermomechanical Controlled Processing). These results show the potential and advantages of the accelerated cooling process after rolling for the production of steel plates with high mechanical strength and high toughness, associated with a low equivalent carbon.
Keywords
Resumo
A usina Ouro Branco da Gerdau iniciou o desenvolvimento de produtos com alta complexidade três anos depois da implementação de seu novo laminador de chapas grossas. A evolução de sua curva de aprendizado é cada vez mais desafiadora, uma vez que estão sendo fabricados produtos com especificações extremas. Este trabalho apresenta os primeiros resultados do desenvolvimento de chapas grossas da classe de 510 MPa produzidos por laminação controlada seguida de resfriamento acelerado. Eles mostram o potencial e as vantagens decorrentes do uso deste processo na produção de aços com alta resistência mecânica e alta tenacidade, cuja composição química apresenta baixos valores de carbono equivalente.
Palavras-chave
References
1 Viana RT Jr, Silva AC, Reis EG, Silveira JHD, Silva MPM, Fraga RA, et al. Development of 510 MPA strength class steel plates with high toughness produced by accelerated cooling in Gerdau Ouro Branco. In: Proceedings of the 11th International Rolling Conference: ABM Week; 2019; São Paulo. São Paulo: Associação Brasileira de Metalurgia e Materiais; 2019. 6 p.
2 Nishioka K, Ichikawa K. Progress in thermomechanical control of steel plates and their commercialization. Science and Technology of Advanced Materials. 2012;13:1-20.
3 Nishioka K. Market requirements of thermomechanically processed steel for the 21st century. Steel World. 2000;5(1):61-67.
4 Streißelberger A, Schwinn V, Hubo R. Niobium, Science & Technology: Proceedings of the International Symposium Niobium 2001. Bridgeville: Niobium 2001 Ltd.; 2001. p. 625-646.
5 Evans JF, Clark MT. Plate cooling: technologies and market requirements. AISE Steel Technology. 2002:49-53.
6 Kirsch HJ, Flüß P, Schütz W, Streißelberger A. New property combinations in heavy plate via the accelerated cooling process. Stahl und Eisen. 1999;119(3):57-65.
7 Irvine KJ, Pickering FB, Gladman T. Grain-refined C-Mn steels. Journal of the Iron and Steel Institute. 1967;205:161-182.
8 Boratto F, Barbosa R, Yue S, Jonas JJ. The influence of chemical composition on the recrystallisation behaviour of microalloyed steels. In: Processing, Microstructure and Properties of HSLA Steels: Proceedings of an International Symposium on Processing, Microstructure and Properties of HSLA Steels; 1987; Pittsburgh, PA. Warrendale: TMS; 1987. p. 51-61.
9 Ouchi C, Sampei T, Kozasu I. The effect of hot rolling condition and chemical composition on the onset temperature of gamma-alpha transformation after hot rolling. Transactions of the Iron and Steel Institute of Japan. 1982;22(3):214-222. http://dx.doi.org/10.2355/isijinternational1966.22.214.
10 Steven W, Haynes AG. The temperature of formation of martensite and bainite in low alloy steels. Journal of the Iron and Steel Institute. 1956;183:349-359.
Submitted date:
11/28/2019
Accepted date:
12/14/2019