Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212469
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original - Edição Especial “Tributo ao Prof. T. R. Strohaecker”

Use of instrumented charpy testing on the fracture toughness characterization of metallic materials

Luiz Carlos Pereira, Juan Carlos Garcia de Blas, Sandro Griza, Fathi Aref Ibrahim Darwish

Downloads: 4
Views: 1063

Abstract

The Charpy test has been used for over a hundred years as an important tool in the qualification of materials in engineering projects and in the development of new metal alloys. The instrumentation of the Charpy test allowed its use in determining the dynamic fracture toughness parameters (KId, JId), and thus the verification of the effects of temperature and loading rate on the performance of metallic materials. The small sample sizes, ease in preparing these samples and execution the tests have been guaranteeing their use in the various areas of engineering. Prof. Telmo R. Strohaecker was one of the pioneers in the use of the Instrumented Charpy test in the country in determining parameters of the dynamic fracture mechanics for the characterization of the fracture toughness of high-strength low-alloy steels.

Keywords

Instrumented Charpy test; Dynamic Fracture Toughness; Ductile-brittle transition.

Referências

1 Hertzberg RW, Vinci RP, Hertzberg JL. Deformation and fracture mechanics of engineering materials. 5th ed. USA: John Wiley & Sons; 2013. p. 499-502

2 Tóth L, Rossmanith HP, Siewert TAS. Historical background and development of the Charpy Test. European Structural Integrity Society. 2002;30:3-19.

3 Bent Russel S. Experiments with a new machine for testing materials by impact (reprint from 1898). In: Siewert TA, Manahan MP, editors. Pendulum impact testing: a century of progress. ASTM STP 1380. West Conshohocken, PA: ASTM International; 2002. p. 17-45.

4 Siewert TA, Manahan MP, McCowan CN, Marsh FJ, Ruth EA. The history and importance of impact testing. In: Siewert TA, Manahan MP, editors. Pendulum impact testing: a century of progress, ASTM STP 1380. West Conshohocken, PA: ASTM International; 2000. p. 3-16.

5 Charpy G. Essay on the metals impact bend test of notched bars (reprint from 1901), In: Siewert TA, Manahan MP, editors. Pendulum impact testing: a century of progress. ASTM STP 1380. West Conshohocken, PA: ASTM International; 2002. p. 46-69.

6 ASTM International. ASTM E-23 - Test Method for Notched Bar Impact Testing of Metallic Materials. Conshohocken, PA: ASTM International; 2020.

7 Tetelman AS, McEvily AJ Jr. Fracture of structural materials. USA: John Wiley & Sons; 1967. p. 114-122.

8 Hertzberg RW, Vinci RP, Hertzberg JL. Deformation and fracture mechanics of engineering materials. 5th ed. USA: John Wiley & Sons; 2013. p. 307-381.

9 Knott JF. Fundamentals of fracture mechanics. London: Butterworth; 1976.

10 Broek D. Elementary engineering fracture mechanics. 4th ed. USA: Kluwer Academic Publisher; 1986

11 ASTM International. ASTM E-399 – Test Method for Linear Elastic Plane-Strain Fracture Toughness of Metallic Materials. West Conshohocken, PA: ASTM International; 2020.

12 Anderson TL. Fracture mechanics: fundamentals and applications. 4th ed. USA: CRC Press; 2017

13 Hertzberg RW, Vinci RP, Hertzberg JL. Deformation and fracture mechanics of engineering materials 5th ed. USA: John Wiley & Sons; 2013. p. 358-62.

14 ASTM International. ASTM E-1290 – Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement. West Conshohocken, PA: ASTM International; 2020.

15 ASTM International. ASTM E-1820 – Test Method for Measurement of Fracture Toughness. West Conshohocken, PA: ASTM International; 2020.

16 Ritchie RO, Thompson AW. On the macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1985;6A:233-247.

17 Pisarski HG. Application and verification of the SINTAP fracture toughness estimation procedure for welds and parente materials. FITNET; 1999. p. 1-15. TWI Report n. 88269/3-3/99.

18 Webster S, Bannister A. Structural integrity assessment procedure for Europe – of the SINTAP programme overview. Engineering Fracture Mechanics. 2000;67:481-514.

19 Hadley I. BS 7910:2013 – Guide to methods for assessing the acceptability of flows in metallic structures. International Journal of Pressure Vessels and Piping. 2000;165:263-269.

20 American Petroleum Institute. API 5L Specification for Line Pipe, 43th ed. USA: American Petroleum Institute; 2004.

21 International Organization for Standard. ISO 14556 – Int. Standard – Steel - Charpy V-notch pendulum impact test – instrumented test method. Switzerland: International Organization for Standard; 2000.

22 ASTM International. ASTM E-2298 – Standard Test Method for Instrumented Impact Testing of Metallic Materials, West Conshohocken, PA: ASTM International; 2020.

23 Server WL. Impact three-point bend testing for notched and precracked specimens. Journal of Testing and Evaluation. 1978;6(1):29-34.

24 Kobayashi T. Development in the instrumented Impact test – computer aided instrumented impact testing system. In: François D, Pineau A, editors. From charpy to present impact testing. France: Elsevier Science Ltd; 2002. p. 165-172

25 Sánches L, Gutiérrez-Solana F. Correlation between impact resistance and fracture toughness in aged duplex stainless steels. In: François D. Pineau A, editors. From charpy to present impact testing. France: Elsevier Science Ltd; 2002. p. 87-94

26 Alar Z, Mandic D, Dugorepec A, Sakoman M. Application of instrumented Charpy method in characterisation of materials. Interdisciplinary Description of Complex Systems. 2015;13(3):479-487.

27 Tronskar JP, Mannan MA, Lai MO. Correlation between quasi-static and dynamic crack resistance curves. Engineering Fracture Mechanics. 2002;70:1527-1542.

28 Viehring H, Boehmert J, Dzugan J. Use of instrumented Charpy impact tests for the determination of fracture toughness values. In: François D, Pineau A, editors. From Charpy to present impact testing. France: Elsevier Science Ltd; 2002. p. 245-252.

29 Yu M, Luo Z, Chao YJ. Correlations between Charpy V-notch impact energy and fracture toughness of nuclear reactor pressure vessel (RPV) steels. Engineering Fracture Mechanics. 2015;147:187-202.

30 Wallin K, Valo M, Rintamaa R, Torronen K, Ahlstrand R. Descriptive characteristics of different types of test for irradiation embrittlement. Nuclear Engineering and Design. 1995;159:69-80.

31 Ohtsuka N, Shindo Y, Makita A. Evolution of hydrogen embrittlement. European Physical Journal Web Conferences. Instr Charpy test, EPJ Web of Conferences, 2010;6(14004):1-7.

32 Schindler HJ, Kalkhof D, Tipping P, Sokolov M, Dean SW. Determination of transferable Lower-Bound Fracture toughness from small specimens. Journal of ASTM International. 2008;5(8):1-11.

33 Chaouadi R, Puzzolante JL. Procedure to estimate the crack resistance curve from the Instrumented Charpy V-Notched Impact Test. In: Proceedings of the 12th International Conference on Fracture; 2012; Ontario, Canada. Ontario: SCK CEN Publications; 2012. Vol. 1, p. 1-10.

34 Parrot A, Dahl A, Forget P, Marini B. Evaluation of fracture toughness from Instrumented Charpy impact test for a reactor pressure vessel steel using Local Approach to fracture. In: Proceedings of the Conference EMMC9, 2006; France. The Netherlands: EUROMECH; 2006. p. 1-7.

35 Tronskar JP, Mannan MA, Lai MO. Measurement of fracture initiation toughness and crack resistance in instrumented Charpy impact testing. Engineering Fracture Mechanics. 2002;69:321-338.

36 Holzmann M, Dlouhy I, Brumovsky M. Measurement of fracture toughness behaviour of Cr-Ni-Mo-V pressure vessel steel using pre-cracked Charpy specimens. International Journal of Pressure Vessels and Piping. 1999;76:591-598.

37 Canonico DA, Stelzman WJ, Berggren RG, Nanstad RK. Use of instrumented charpy tests to determine onset of upper-shelf energy. Welding Research Supplement. 1981;5:85s-91s.

38 Lucon E, McCowan CN, Santoyo RL. Impact characterization of line pipe steels by means of standard, sub-size and miniaturized Charpy specimens. NIST Tech. Note. 1865;2015:1-56.

39 Alfitouri AO, Savas MA, Evcil A. Charpy Impact and tension tests of two pipeline materials at room and cryogenic temperatures. Int. Journal of Applied Engineering Research. 2018;13(17):13321-13334.

40 Hashemi SH. Apportion of Charpy energy in API 5L grade X70 pipeline steel. International Journal of Pressure Vessels and Piping. 2008;85(12):879-884.

41 Hashemi SH, Jalali MR. Experimental study of Charpy impact characteristics of high-strength spiral welded gas pipeline. In Proceedings of the 2006 International Pipeline Conference; IPC 2006; Alberta, Canada. USA: ASME; 2006. p. 57-63. Paper n. IPC-2006-10068.

42 Pereira LC, Silva CRM. Efeito do hidrogênio sobre o aço CORTEN. Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro; 1977. p. 1-72. Undergraduate Notes.

43 Pereira LC. Estudo da tenacidade a fratura dinâmica do aço AISI 4140 em vários estados microestruturais. [dissertação]. Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro; 1981.

44 Strohaecker TR. Influencia dos tratamentos térmicos sobre a tenacidade de um aço ABNT 4340 [dissertação]. Universidade Federal do Rio Grande do Sul; 1980.

45 Server WL, Wullaert RA, Sheckherd JW. Verification of the epri dynamic fracture toughness testing procedures. Sunnyvale: Effects Technology Inc.; 1975. Topical Report 75-42.

46 Saxton HJ, Ireland DR, Server WL. Analysis and control of inertial effects during instrumented impact testing. In: DeSisto TS. ASTM STP 563: instrumented impact testing. West Conshohocken, PA: ASTM International; 1973.

47 Zackay WE, Parker RD, Wood WE. Influence of some microstructural features on the fracture toughness of high strength steels. In: Proceedings of the Third International Conference on the Strength of Metals and Alloys; 1973 August 20-25; Cambridge, England. Institute of Metals, London, August 1973. p. 1-14

48 Ritchie, RO, Horn, RM. Further considerations on the inconsistency in toughness evaluation of AISI 4340 steel austenitized at increasing temperatures. Metallurgical Transactions A. 1978;9:331-341.

49 Firrao D, Begley JA, Silva, RR, De Benedetti. The influence of notch root radius and austenitizing temperature on fracture apparence of as-quenched Charpy-V type AISI 4340 steel specimens. Metallurgical Transactions A. 1982;13:1003-1013.

50 Taylor D. The theory of critical distance: a new perspective in fracture mechanics. UK: Elsevier; 2007.

51 Horn RM, Ritchie RO. Mechanisms of tempered martensite embrittlement in low alloy steels. Metallurgical Transactions A. 1978;9:1039-1053.

52 Darwish FAI, Pereira LC, Gatts C, Graça MLA. On the tempered martensite embrittlement in AISI 4140 low alloy steel. Materials Science and Engineering. 1991;132:L5-L9.

53 Reguly A, Matlock DK, Krauss G. Grain boundary features at an intergranular fracture of a martensitic AISI 5160 steel. Acta Micros. 1998;7(19):285-288.

54 Krauss G. Steels – processing, structure and performance. West Conshohocken, PA: ASTM International; 2005. p. 383-410.

55 Ritchie RO, Knott JF, Rice JR. On the relationship between critical tensile stress and fracture toughness in mild steel. Journal of the Mechanics and Physics of Solids. 1973;21:395-410.

56 Tetelman AS, Wilshaw TR, Rau CA. The critical tensile stress for cleavage. International Journal of Fracture Mechanics. 1968;4:147-156.

57 Thompson AW, Knott JF. Micromechanisms of brittle fracture. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1993;24:523-534.

58 Evans AG. Statistical aspects of cleavage fracture in steel. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1983;14:1349-1355.

59 Chen JH, Cao R. Micromechanism of cleavage fracture os metals: a comprehensive microphysical model for cleavage cracking in metals, London: Elsevier; 2015.

60 Pugh SF. An introduction to grain boundary fracture in metals, London: The Institute of Metals; 1991.

61 Thomason PF. Ductile fracture of metals. Oxford: Pergamon Press; 1990.

62 Graça MLA. Micromecanismos de iniciação da fratura em amostras entalhadas [tese]. Guaratinguetá: Universidade Estadual Paulista “Júlio de Mesquita Filho”; 2002.

63 Pineau A. Modeling ductile to brittle fracture transition in steels – micromechanical and physical challenges. International Journal of Fracture. 2008;150:129-156.

64 Ireland DR. Procedures and Problems Associated with Reliable Control of the Instrumented Impact Test. In: DeSisto TS. STP 563: instrumented impact testing. West Conshohocken, PA: ASTM International; 1973. p. 3-29.

65 Landrein P, Lorriot T, Guillaumat L. Influence of some test parameters on specimen loading determination methods in instrumented Charpy impact test. Engineering Fracture Mechanics. 2001;68:1631-1645.

66 Shterenlikht A, Hashemi SH, Yates JR, Howard IC, Andrews RM. Assessment of na instrumented Charpy impact machine. International Journal of Fracture. 2005;132:81-97.

67 Strohaecker TR, Djongue W. Influência dos tratamentos térmicos sobre a tenacidade de um aço SAE 4340. Metalurgia – ABM; 1981;37(285):457-461.

68 Morita S, Otani M, Kobayashi T. Problems related to the measurement of load signal in the instrumented Cahrpy impact test, In: François D, Pineau A, editors. From Charpy to present impact testing. France: Elsevier Science Ltd; 2002. p. 213-220.

69 Xinping Z, Yaowu S. Comparative studies of several methods to determine the dynamic fracture toughness of a nuclear pressure vessel steel A508 CL3 with Charpy-size specimen. International Journal of Fracture. 1996;81:195-204.

70 Lin Y, Yu Q, Pan J, Duan F, Ritchie RO, Li Y. On the impact toughness of gradient-structured metals. Acta Materialia. 2020;193:125-137.


Submetido em:
18/08/2020

Aceito em:
23/11/2020

60884a30a95395328957fa02 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections