Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212472
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

A workflow for defining geological domains using machine learning and geostatistics

Gabriel de Castro Moreira, Rudi César Comiotto Modena, João Felipe Coimbra Leite Costa, Diego Machado Marques

Downloads: 0
Views: 639

Abstract

Determining geological domains to be modeled is one of the first steps in the mineral resource evaluation process. Prior knowledge regarding the geology of the deposit is fundamental but, in most cases, not enough for a reasonable definition of these domains. A careful statistical analysis of the available data (e.g. geochemical samples) is also of great importance. In order to avoid mixing different populations of data, samples with similar characteristics should be grouped together. In the context of supervised machine learning, cluster analysis can be especially suited for this matter and there are many different algorithms available in the literature. In this paper, two clustering techniques were investigated: the first is the k-means algorithm, one of the most widely used methods in machine learning, based on the iterative analysis of the statistical distribution, while the other one is based on spatial autocorrelation statistics, which takes into consideration the geographic distribution of samples. The choice of the most appropriate technique, as well as the number of domains can be challenging when performing cluster analysis, and the evaluation of an expert is still necessary, as the results are subjective.

Keywords

Cluster analysis; Geostatistics; Mineral resources; Mining.

Referências

1 Soares A. Geoestatística para as ciências da terra e do ambiente. Lisboa: Instituto Superior Técnico; 2000.

2 Matheron G. Principles of geostatistics. Economic Geology and the Bulletin of the Society of Economic Geologists. 1963;58:1246-1266.

3 Tan P-N, Steinbach M, Kumar V. Introduction do data mining. Boston: Pearson Education; 2005.

4 Sokal RR, Sneath PHA. Principles of numerical taxonomy. Journal of Mammalogy. 1965;46:111-112.

5 MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probabability; 1967; Berkeley. Berkeley: University of California Press; 1967. p. 281-296.

6 Rossi ME, Deutsch CV. Mineral resource estimation. Dordrecht: Springer Science & Business Media; 2014.

7 Scrucca L. Clustering multivariate spatial data based on local measures of spatial autocorrelation. Quaderni del Dipartimento di Economia. Finanza e Statica. 2005;20:1-25.

8 Romary T, Ors F, Rivoirard J, Deraisme J. Unsupervised classification of multivariate geostatistical data: two algorithms. Computers & Geosciences. 2015;85:96-103.

9 Fouedjio F. A hierarchical clustering method for multivariate geostatistical data. Spatial Statistics. 2016;18:333-351.

10 Martin R, Boisvert J. Towards justifying unsupervised stationary decisions for geostatistical modeling: Ensemble spatial and multivariate clustering with geomodeling specific clustering metrics. Computers & Geosciences. 2018;120:82-96.

11 Martin R. Data driven decisions of stationarity for improved numerical modeling in geological environments [thesis]. Edmonton: University of Alberta; 2019.

12 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. Journal of Machine Learning Research. 2011;12:2825-2830.

13 Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms; 2007 January 7-9; New Orleans, Louisiana, USA. New Orleans: ACM-SIAM; 2007. p. 1027-1035.

14 Ord JK, Getis A. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis. 1995;27:286-306.

15 Isaaks EH, Srivastava RM. An introduction to applied geostatistics. New York: Oxford University Press; 1989.

16 Modena RCC, Moreira GC, Marques DM, Costa JFCL. Avaliação de técnicas de agrupamento para definição de domínios estacionários com o auxílio de geoestatística. In: Associação Brasileira de Metalurgia, Materiais e Mineração. Proceedings of the 20th Mining Symposium - International; 2019 October 1-3; São Paulo, Brazil. São Paulo: ABM; 2019. p. 91-100.

17 Srivastava RM, Parker HM. Robust measures of spatial continuity. In: Proceedings of the Third International Geostatistics Congress; 1988 September 5-9; Avignon, France. Avignon: Springer; 1988. p. 295-308.

18 Moreira GC. Análise de agrupamento aplicada à definição de domínios de estimativa para a modelagem de recursos minerais [thesis]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2020.


Submetido em:
20/08/2020

Aceito em:
21/11/2021

61b26300a95395058b75d112 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections