Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20212519
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

A predictive model for hydrogen content in steel in non-degassed heats

Beatriz de Paula Lopes, José Adilson de Castro, Leonardo Martins Demuner, André Luiz Vasconcellos da Costa e Silva

Downloads: 7
Views: 178

Abstract

Hydrogen may cause several problems during steel processing. Issues caused or enhanced by hydrogen range from different types of bubbles such as pinholes to breakout during continuous casting. Further down the line, segregation and embrittlement may lead to cracking such as flaking or blistering. These problems impact plant productivity and have cost impacts on equipment maintenance and the need for additional steel treatment. Some of the problems lead to scraping. Although vacuum degassing effectively controls the hydrogen content of steel, it introduces additional costs that are not justifiable for many products. This work aims to identify the main sources of hydrogen in liquid steel in the Ternium Brazil steelmaking plant and to propose a model to decide the need for hydrogen measurement for the degassing process, focusing on steels for which vacuum degassing is not a specification requirement. It is essential for these steels to guarantee a controlled level of dissolved hydrogen to avoid problems, mostly at casting. Once the sources are identified, a model is developed to predict the hydrogen content at the beginning of the secondary metallurgy treatment. Based on the model, it is proposed that hydrogen should be measured or not at this step to decide if vacuum degassing is required to assure safety in casting.

Keywords

Hydrogen; Steel; Steel plant

Referências

1 Turkdogan E. Principles of steelmaking. London: The Institute of Materials; 1996.

2 Gaye H. Inclusion formation in steels. In: Cramb A, ed. The making, shaping and treating of steel, casting volume. 11th ed. Chap. 3. Pittsburgh: AIST; 2003.

3 Hino M, Ito K. Thermodynamic data for steelmaking. In: The 19th Committee for Steelmaking; 2010; Tohoku. Sendai: Tohoku University Press; 2010.

4 Glueckauf E, Kitt GP. The hydrogen content of atmospheric air at ground level. Quarterly Journal of the Royal Meteorological Society. 1957;83(358):522-528.

5 Epstein H, Chipman J, Grant NJ. Hydrogen in steelmaking practice. JOM. 1957;9(4):597-608.

6 vom Ende H, Liestmann WD. The hydrogen content in the manufacturing of oxygen converter steel. Stahl und Eisen. 1965;85(3):117-124.

7 Kerlie WL, Richards JH. Origin and elimination of hydrogen in basic open-hearth steels. JOM. 1957;9(12):1541-1548.

8 Verdan L, Avillez RR, Costa e Silva A. Hydrogen issues in steel processing- a preliminary approximation. In: XLV CALPHAD; 2016; Awaji Island, Japan. Japan: JSPS; 2016. p. 163.

9 Uda M, Dan T, Ohno S. Effect of hydrogen on blowhole formation in pure iron during solidification. Tetsu To Hagane. 1976;62(1):62-71.

10 Barraclough K. The significance of hydrogen in steel manufacture. Murex Review. 1954;1:305.

11 Costa e Silva A. Applications of multicomponent databases to the improvement of steel processing and design. Journal of Phase Equilibria and Diffusion. 2017;38(6):916-927.

12 Ueshima Y, Mizoguchi T, Kajitani T. Hydrogen-induced sticker breakouts in continuous casting of steel: chemical reactions between ambient atmosphere, molten flux, molten steel and solidified shell. In: Molten Slags; 2012; Beijing, China. Beijing; 2012. p. 8.

13 Abraham S, Chen S, Asante J, Souza CD. Hydrogen and nitrogen control and breakout warning model for casting non-degassed steel. Iron and Steel Technology. 2010;7(10):54-64.

14 Mizukami H, Hara M, Shirai Y, Watanabe T. Generation of hydrogen gas from solidified shell surface at initial stage of solidification of carbon steel. ISIJ International. 2004;44(10):1714-1719.

15 Sahoo PP, Rout BK, Palai P. Mechanism and control of hydrogen induced abnormal sticky behavior in slab casting mould. ISIJ International. 2015;55(5):993-999.

16 Susaki K, Serra JG, Almeida EN, Botelho AH. Evolução dos processos de refino e lingotamento de aços microligados e tratados com CaSi na CSN. In: Anais do XXXVI Seminário de Fusão, Refino e Solidificação dos Metais; 2005; Vitória, ES. São Paulo: ABM; 2005.

17 Scott TE, Troiano AR. Hydrogen and segregates in flaking. JOM. 1959;11(9):619-622.

18 Pressouyre GM. Current solutions to hydrogen problems in steels. In: Interrante CG, Pressouyere GM, editors. Proceedings of the 1st International Conference in Current Solutions to Hydrogen Problems in Steels; 1982; Washington. Materials Park: ASM International; 1982. p. 55.

19 Costa e Silva A. Using computational thermodynamics to understand the evolution of solidification segregation during steel processing. Journal of Phase Equilibria and Diffusion. 2020;41(4):522-531.

20 Wasim M, Djukic MB. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels. International Journal of Hydrogen Energy. 2020;45(3):2145-2156.

21 Steiner JE, Murphy EL. Williams RD. Hydrogen and Flaking After 40 Years of Vacuum Degassing. In: Nisbett E, Melilli A, editors. Steel forgings: second volume, ASTM STP 1259. West Conshohocken: American Society for Testing and Materials; 1997.

22 Plessers J, Maes R, Vangelooven E. Ein neues Tauchsystem für die schnelle Bestimmng von Wasserstoff in flüssigem Stahl. Stahl und Eisen. 1988;108:451-455.

23 Takaishi S, Komai T, Murata H, Hiromoto K, Sekihara H. Behavior of hydrogen in steel in the steel-making and strand casting processes. Tetsu To Hagane. 1978;64(9):1343-1352.

24 Henriques BR. Estudo da incorporação do hidrogênio no aço líquido [dissertação]. Ouro Preto: UFOP; 2010.

25 Bragança SR, Hohemberger JM, Vicenzi J, Marques CM, Basegio T, Correia Lima ÁN, et al. Hydrogen potential sources in refractory materials during steel casting. Steel Research International. 2006;77(6):400-403.

26 Correa RS, Carvalho DAG, Cerchiari BS, Ribeiro JC, Moura EL. Utilização de redes neurais para prever teor de hidrogênio em aços. In: Anais do 50° Seminário de Aciaria, Fundição e Metalurgia de Não-Ferrosos; São Paulo; 2019. São Paulo: ABM; 2019. p. 264-273.

27 Braga BM, Tavares RP. Mathematical model for prediction of hydrogen pick-up of liquid steel during filling of a continuous casting tundish. Metallurgical Research & Technology. 2018;115(4):409.

28 Fruehan R, Misra S. Hydrogen and nitrogen control in ladle and casting operations. Pittsburgh: Department of Materials Science and Engineering, Carnegie Mellon University; 2005. Report No.: DOE Contract DE-FC36- 97ID13554.

29 Poirier J. A review: influence of refractories on steel quality. Metallurgical Research & Technology. 2015;112(4):410-1-410-20.

30 Lingras AP. Hydrogen control in steelmaking. In: Electric Furnace Conference; 1982. Iron & Steel Society; 1982. p. 133-143.

31 Manocha S, Ponchon F. Management of Lime in Steel. Metals. 2018;8(9):686.

32 Fruehan R, editor. Making, shaping, and treating of steel, steelmaking and refining volume. 11th ed. Pittsburgh: AIST Steel Foundation; 1998.

33 Silveira RC, Almeida AM, Fernandes A. A presença do hidrogênio nos processos de produção do aço. In: IV Congreso Ferroaleaciones; 1988; Salvador de Bahía, Brasil. Santiago, Chile: Instituto Latinoamericano del Fierro y el Acero; 1988. p. 11-16.

34 Ootsuka M, Yamamoto S, Nakagawa K, Kouroki S, Iwata K, Nagahata T. The successive hydrogen concentration control in molten steel by direct hydrogen measuring system. ISIJ International. 1996;36(Suppl):S97-S100.

35 Predel H. Petroleum coke. In: Schwarz W, Schossig J, Rossbacher R, Höke H, editors. Ullmans’s enclyclopedia of industrial chemistry. Weinheim: Wiley-Interscience; 2000.

36 Jha KN, Sardar MK, Jha NN, Chakraborty S. Hydrogen control during steel making for medium carbon wheels. Scandinavian Journal of Metallurgy. 2003;32(6):296-300.

37 Jung I-H. Thermodynamic modeling of gas solubility in molten slags-water. ISIJ International. 2006;46(11):1587-1593.

38 Richardson FD. Physical chemistry of melts in metallurgy. London: Academic Press; 1974.

39 Weather & Climate. 2020 [cited 2020 Nov 20]. Available at: https://weather-and-climate.com

40 Belton GR, Hunt RW. How fast can we go? The status of our knowledge of the rates of gas-liquid metal reactions. Metallurgical Transactions. B, Process Metallurgy. 1993;24:241-258.

41 Boorstein WM, Pehlke RD. Kinetics of solution of hydrogen in liquid iron alloys. Transactions of the Metallurgical Society of AIME. 1969;245:1843.

42 Small WM, Radzilowski RH, Pehlke RD. Kinetics of solution of hydrogen in liquid iron, nickel, and copper containing dissolved oxygen and sulfur. Metallurgical Transactions. 1973;4(9):2045-2050.

43 Suzuki K, Taniguchi K. Kinetics of the hydrogen desorption and absorption of molten steel. Tetsu To Hagane. 1976;62(6):605-613.

44 Sasaki Y, Belton GR. Steady-state studies of the reactions of H2 O-CO and CO2 -H2 mixtures with liquid iron. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 1998;29(4):829- 836.

45 Nebosov Y, Sukharev SV, Kazakov SV. Kinetics of hydrogen removal in the gas phase in ladle vacuum treatment. Steel in Translation. 2007;37(7):572-574.

46 Bannenberg N, Bergmann B, Gaye H. Combined decrease of sulphur, nitrogen, hydrogen and total oxygen in only one secondary steelmaking operation. Steel Research. 1992;63(10):431-437.

47 Kleimt B, Kohle S, Johann KP, Jungreithmeier A, Molinero J. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing. Scandinavian Journal of Metallurgy. 2000;29(5):194-205.

48 Steneholm K, Andersson M, Tilliander A, Jönsson PG. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmaking & Steelmaking. 2013;40(3):199-205.

49 Gaye H, Huin D, Bannenberg N, Bergmann B. Modeling of vacuum tank degassing of liquid steel. Le Vide. Les Couches Minces. 1992;261:55-57.

50 Kempken J. Entwicklung eines Simulationsmodells zur Beschreibung der Stichstoffbewegung im Sauerstoffblasprozess [dissertation]. Clausthal-Zellerfeld: TU Clausthal; 1994.

51 Kempken J, Pluschkell W. Simulationsrechnungen zur Entwicklung der Stickstoff im LD-Prozess. Stahl und Eisen. 1995;115(8):67-74.

52 Jun N, Take H, Nakanishi K, Yamamoto T, Tachibana R, Iida Y, et al. Metallurgical characteristics of combinedblown converters. Kawasaki Steel Technical Report. 1982;6:12-20.

53 Denier G. Aciéries de conversion: contexte et aspects théoriques. Techniques de l’Ingénieur. 2018 Apr 10.

54 Denier G, Grosjean JC, Kuhnast J. Protection des tuyères LWS par du CO2 liquide à l’acierie d’Hagondange. Revue de Metallurgie - CIT. 1980;77(4):299-305.

55 Choh T, Iwata K, Inouye M. Estimation of air oxidation of teeming molten steel. ISIJ International. 1983;23(7):598-607.

56 Asai S, Muchi I. Mathematical model of nitrogen absorption at tapping from LD converter. Tetsu To Hagane. 1967;53(7):746-747. http://dx.doi.org/10.2355/tetsutohagane1955.53.7_746.

57 Okayama A, Higuchi Y. A water model experiment on gas absorption during tapping. Tetsu To Hagane. 2016;102(11):607-613.

58 Okayama A, Nakamura O, Higuchi Y. Analysis of plunging pool formation and gas absorption phenomenon during tapping. ISIJ International. 2018;58(4):677-685.

59 Darken LS. Kinetics of metallurgical processes. In: Derge G, editor. Basic open hearth steelmaking. Pittsburgh: AIME; 1951.

60 Darken L, Gurry R. Physical chemistry of metals. New York: McGraw-Hill; 1953.

61 Levenspiel O. Chemical reaction engineering. 3rd ed. New York: Wiley; 1999.

62 Taylor R. Interpretation of the correlation coefficient: a basic review. Journal of Diagnostic Medical Sonography. 1990;6(1):35-39.

63 FrontLine Solvers. 2020 [cited 2020 Nov 22]. Available at: https://www.solver.com/standard-excel-solverlimitations-nonlinear-optimization


Submetido em:
26/11/2020

Aceito em:
08/01/2021

60be53a4a953954c474ad3c4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections