Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20222818
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Estudo da evolução do encruamento e das deformações do aço AISI 430 após estampagem

Study of work hardening evolution and deformation of AISI 430 stainless-steel after stamping

Helbert Stéfano Goulart Francisco; Wellington Lopes; Elaine Carballo Siqueira Corrêa

Downloads: 1
Views: 324

Resumo

A estampagem é um processo de conformação mecânica capaz de gerar uma variada gama de produtos, desde artefatos simples presentes no uso diário, como dobradiças e utensílios domésticos assim como componentes complexos de estruturas e chassis aplicados no setor automotivo. Neste contexto, o estudo do encruamento e da distribuição da deformação são informações essenciais para a escolha de materiais, para aplicações específicas, de modo a evitar a ocorrência de defeitos e fraturas. O estudo do encruamento auxilia também no entendimento de diversos fenômenos metalúrgicos que surgem durante a conformação mecânica, além de contribuir para a redução de diferentes tipos de defeitos em produtos metálicos. Considerando essa abordagem, este trabalho realizou o estudo da evolução do encruamento e a distribuição da deformação de dois aços inoxidáveis ferríticos AISI 430, classificados como tipos A e F com uso do ensaio de cisalhamento e do método de simulação numérica por elementos finitos. Os resultados indicaram a combinação de esforços mecânicos durante a estampagem, a tendência de amaciamento dos aços devido à ocorrência do efeito Bauschinger e a ausência de transientes na taxa de encruamento.

Palavras-chave

Estampagem; AISI 430; Encruamento

Abstract

The stamping is a mechanical forming process used for generating a wide range of products, since simple components used such as folding doors and household items up to automotive products. In this context, the study of the work-hardening and the deformation path are essential information to select materials for specific applications, avoiding occurrence of defects and fracture. The work hardening study helps on the understanding of several metallurgical phenomena detected during forming, beyond to contribute to reduce the incidence of defects in metals products. Considering this approach, this work carried out the study of the evolution of the work hardening and the strain path of two ferritic AISI 430 stainless steels, classified as types A and F with shearing tests and numeric simulation by finites elements method. The results indicated the combination of mechanical efforts during the stamping process and the tendency of softening for both steels due to the Bauschinger Effect and the absence of work-hardening rate transients.

Keywords

Sheet metal forming; AISI 430 stainless steel; Work-Hardening

Referências

1 Mendiguren J, Herrero-Dorca N, Saenz de Argandoña E, Galdos L. Press hardening of alternative materials: conventional high- strength steels. International Journal of Material Forming. 2018;11:663-670. http://dx.doi. org/10.1007/s12289-017-1379-y.

2 Hashemi SJ, Roohi AH. Minimizing spring-back and thinning in deep drawing process of St14 steel sheets. International Journal on Interactive Design and Manufacturing. 2022;16(1):381-388. http://dx.doi.org/10.1007/ s12008-021-00816-7.

3 Luo S, Yang G, Lou Y, Xu Y. Prediction of strain path changing effect on forming limits of AA 6111-T4 based on a shear ductile fracture criterion. Metals. 2021;11(4):546. http://dx.doi.org/10.3390/met11040546.

4 Laukonis JV, Ghosh AK. Effects of strain path changes on the formability of sheet metals. Metallurgical Transactions A. 1978;9(12):1849-56. https://doi.org/10.1007/bf02663419.

5 Basak S, Panda SK. Failure strains of anisotropic thin sheet metals: experimental evaluation and theoretical prediction. International Journal of Mechanical Sciences. 2019;151:356-374.; [cited 2022 October 02]. http://dx.doi. org/10.1016/j.ijmecsci.2018.10.065.

6 Bastos AL. Análise do processo de estampagem de chapas de aço através da curva limite de conformação. Santa Catarina: Repositório Institucional da UFSC; 2012.

7 Morais FLD. Effect of shear direction on work-hardening Evolution of AISI 409 steel under rolling/shearing loading. Materials Research. 2022;25:e20210398. http://dx.doi.org/10.1590/1980-5373-MR-2021-0398.

8 Marciniak Z, Duncan JL, Hu SJ. Mechanics of sheet metal forming. 2. ed. Woburn: Butterworth-Heinemann; 2002.

9 Rauch EF. The flow law of mild steel under monotonic or complex strain path. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena. 1992;23-24:317-333. http://dx.doi.org/10.4028/www.scientific.net/ ssp.23-24.317.

10 Butcher C, Khameneh F, Abedini A, Connolly D, Kurukuri S. On the experimental characterization of sheet metal formability and the consistent calibration of the MK model for biaxial stretching in plane stress. Journal of Materials Processing Technology. 2020;1(287):116887-7. http://dx.doi.org/10.1016/j.jmatprotec.2020.116887.

11 Pashazad H, Kharazi M. A peridynamic plastic model based on von Mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading. International Journal of Mechanical Sciences. 2019;156:182-204. http:// dx.doi.org/10.1016/j.ijmecsci.2019.03.033.

12 Zandrahimi M, Platias S, Frice D; Barret D, Bate PS, Roberts WT. Effects of changes in strain path on work hardening in cubic metals. Mettalurgical and Materials Transactions. 1989;20(A):2471-2482. https://doi. org/10.1007/BF02666682.

13 Lima ACS, Dagostim DK, Zaage LA, Casagrande PAS, Daleffe A. Survey of the forming limit curve of SAE 1006 steel. Brazilian Journal of Development. 2022;8(4):31555-31562. http://dx.doi.org/10.34117/bjdv8n4-575.

14 GVK SS, Tan MJ, Liu Z. Plastic Instability in Co-Cr-Ni-Mo alloy wires drawn with different drawing practices. Materials Science and Engineering. 2019;747:80-97. http://dx.doi.org/10.1016/j.msea.2019.01.059.

15 Zheng Z, Li R, Zhan M, Yuan G, Zhang H, Lei Y, Balint DS. The effect of strain rate asymmetry on the Bauschinger effect: A discrete dislocation plasticity analysis. Journal of Materials Research and Technology. 2021;16:190418. http://dx.doi.org/10.1016/j.jmrt.2021.12.107.


Submetido em:
28/10/2022

Aceito em:
29/05/2023

64b7ea73a953953ad9648f84 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections