Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20243037
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

Impact evaluation of amount of burnt lime, moisture and pellet feed on the sinter fines fraction by utilizing a sintering pilot plant

Celso Luiz Moraes Alves; Ana Carolina Castro Barboza da Silva; Sara Santos Silva; Arnaldo Ledig Aguiar Silva; José Adilson de Castro

Downloads: 0
Views: 381

Abstract

The ironmaking industries are facing challenges concerning the necessity of reducing CO2 emission and the changes in the quality profile of natural iron ore beds. Thus, utilizing sinter pot tests, this work analyzed the impact on the sinter yield by the variation of the amount of burnt lime from 1.8 to 2.8%, and the moisture from 6.0 to 7.0% for two ratios of pellet feed in the iron ore mix, 15%, and 20%. The tests were conducted focusing on producing sinter with higher iron content. It was noted that: i) increasing the pellet feed with low silica content in the sinter mixture raise the total iron content in sinter products and reduced the sinter slag volume; ii) the increase of moisture or burnt lime separately was not effective to minimize the sintering productivity reduction; iii) increasing simultaneously moisture and burnt lime allow achieving levels for sintering productivity close to the standard operational level.

Keywords

Sintering; Pilot plant; Pellet feed; Sinter quality

Referências

1 Laguna JC, Duerinck J, Meinke-Hubeny F, Valee J. Carbon-free steel production: cost reduction options and usage of existing gas infrastructure. Brussels: European Parliamentary Research Service – EPRS; 2021. https://doi. org/10.2861/01969.

2 Basson E, World Steel Association. Data Report - Steel statistical publication 2022. Brussels: World Steel Association; 2022. [cited 2022 Nov 3]. Available at: https://worldsteel.org/wp-content/uploads/World-Steel-inFigures-2022-1.pdf

3 Brown T, Gambhir A, Florin N, Fennell P. Reducing CO2 Emissions from Heavy Industry: A Review of Technologies and Considerations for Policy Makers. London: Imperial College; 2012. (Briefing paper; 7).

4 Pardo N, Moya JA. Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry. Energy. 2013;54:113-128. https://doi.org/10.1016/j.energy.2013.03.015.

5 Ahmed H. New trends in the application of carbon-bearing materials in blast furnace iron-making. Minerals (Basel). 2018;8(12):561. http://doi.org/10.3390/min8120561.

6 Feinman J. Direct Reduction and Smelting Process. In: Fruehan RJ, United States Steel Corporation. Aise Steel Foundation. The making, shaping and treating of steel - ironmaking volume. 11th ed. USA: United States Steel Corp.; 1999. Chapter 11, pp. 741-780.

7 Chatterjee A. Sponge iron production by direct reduction of iron oxide. New Delhi: PHI Learning Private Limited; 2010.

8 Castro JA, Oliveira EM, Campos MF, Takano C, Yagi J. Analyzing cleaner alternatives of solid and gaseous fuels for iron ore sintering in compacts machines. Journal of Cleaner Production. 2018;198:654-661. http://doi.org/10.1016/j. jclepro.2018.07.082.

9 The Technical Society. The Iron and Steel Institute of Japan. Production and technology of iron and steel in Japan during 2020. ISIJ International. 2021;61(6):1739-1757. http://doi.org/10.2355/isijinternational.61.1739.

10 Honeyands T, Manuel J, Matthews L, O’Dea D, Pinson D, Leedham J, et al. Comparison of the mineralogy of iron ore sinters using a range of techniques. Minerals (Basel). 2019;9(6):333. http://doi.org/10.3390/min9060333.

11 Yin J, Lv X, Xiang S, Bai C, Yu B. Influence of CaO source on the formation behavior of calcium ferrite in solid state. ISIJ International. 2013;53(9):1571-1579. http://doi.org/10.2355/isijinternational.53.1571.

12 Osuga K, Adachi T, Miyagawa K, Matsumura T, Nozawa K. Sintering technology using parallel granulation process at high pellet feed ratio. ISIJ International. 2019;59(10):1756-1764. http://doi.org/10.2355/isijinternational.ISIJINT2018-348.

13 Mežibrický R, Fröhlichová M, Findorák R, Goettgens VS. Ore assimilation and secondary phases by sintering of rich and high-gangue iron ores. Minerals (Basel). 2019;9(2):128. http://doi.org/10.3390/min9020128.

14 Lins FF, Adamian R. Minerais coloidais, teoria DLVO estendida e forças estruturais. Rio de Janeiro: CETEM/ MCT; 2000. (Mineral Technology Serie; 78). [cited 2023 July 3]. Available at: http://mineralis.cetem.gov.br/handle/ cetem/121

15 Harvey T, Honeyands T, O’Dea D, Evans G. Study of sinter strength and pore structure development using analogue tests. ISIJ International. 2020;60(1):73-83. https://doi.org/10.2355/isijinternational.ISIJINT-2019-247. 16 Lu L. Iron ore: mineralogy, processing and environmental sustainability. 2nd ed. New Dehli: Woodhead Publishing – Elsevier; 2022. p. 489-537. 17 Oliveira VF, Bagatinib MC. Experimental evaluation of the usage of residues for sintermaking. Journal of Materials Research and Technology. 2019;8(6):5781-5789. http://doi.org/10.1016/j.jmrt.2019.09.047.

18 Kim KM, Kim JH, Kwon JH, Lee JA, Han JW. Effect of deflector plate for particle size segregation control. Archives of Metallurgy and Materials. 2019;64(2):495-500. http://doi.org/10.24425/amm.2019.127566.

19 Fröhlichová M, Findorák R, Legemza J, Mašlejová A, Ivanišin D. Iron-ore sintering process optimization. Archives of Metallurgy and Materials. 2015;60(4):2895-2899. https://doi.org/10.1515/amm-2015-0462.

20 Mežibrický R, Fröhlichová M, Mašlejová A. Phase composition of iron ore sinters produced with biomass as a substitute for the coke fuel. Archives of Metallurgy and Materials. 2015;60(4):2955-2963. http://doi.org/10.1515/ amm-2015-0472.

21 Niwa Y, Sakamoto N, Komatsu O, Noda H, Kumasaka A. Commercial production of iron ore agglomerates using sinter feeds containing a large amount fine ores. ISIJ International. 1993;33(4):454-461. http://doi.org/10.2355/ isijinternational.33.454.

22 Associação Brasileira de Normas Técnicas. NBR ISO 3082:2011: Minérios de Ferro - Procedimentos de Amostragem e Preparação de Amostra. Rio de Janeiro: ABNT; 2011.

23 Campos FLC Jr. Caracterização Tecnológica de Misturas de “Sinter-feed” e de “Pellet-feed” Empregando Diferentes Rotas de Sinterização em Escala Piloto” (tese). Ouro Preto: Universidade Federal de Ouro Preto; 2018.

24 Nicol S, Chen J, Pownceby MI, Webster NAS. A review of the chemistry, structure and formation conditions of Silico-Ferrite of Calcium and Aluminum (‘SFCA’) phases. ISIJ International. 2018;58(12):2157-2172. http://doi. org/10.2355/isijinternational.ISIJINT-2018-203.

25 Pownceby MI, Clout JMF. Importance of fine ore chemical composition and high temperature phase relations: applications to iron ore sintering and pelletising. Mineral Processing and Extractive Metallurgy. 2003;112(1):44-51. http://doi.org/10.1179/037195503225011402.

26 Clout JMF, Manuel JR. Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores. Powder Technology. 2003;130:393-399.

27 Panigrahy SC, Verstraeten P, Dilewijns J. Influence of MgO addition on mineralogy of iron ore sinter. Metallurgical Transactions. 1984;15B:23-32. http://doi.org/10.1007/BF02661059.

28 Biswas AK. Principles of blast furnace ironmaking. Astralia: Cootha Publishing Hause; 1981.

29 Geerdes M, Toxopeus H, Vliet C, Chaignaeu R, Vander T. Modern blast furnace ironmaking: an introduction. 2nd ed. Netherlands: IOS Press; 2009.

30 Iwami Y, Yamamoto T, Higuchi T, Nushiro K, Sato M, Oyama N. Effect of oxygen enrichment on sintering with combined usage of coke breeze and gaseous fuel. ISIJ International. 2013;53(9):1633-1641. http://doi.org/10.2355/ isijinternational.53.1633.


Submetido em:
24/11/2023

Aceito em:
24/04/2024

6650fd9ea953957a21615336 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections